版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省昆明市水泥发电厂中学高一数学文模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在正方体中,下列几种说法正确的是(
)A.
B.
C.
与成角
D.与成角参考答案:C2.已知正方形ABCD的对角线AC与BD相交于E点,将△ACD沿对角线折起,使得平面ABC⊥平面ADC(如图),则下列命题中正确的是() A.直线AB⊥直线CD,且直线AC⊥直线BD B.直线AB⊥平面BCD,且直线AC⊥平面BDE C.平面ABC⊥平面BDE,且平面ACD⊥BDE D.平面ABD⊥平面BCD,且平面ACD⊥平面BDE 参考答案:C【考点】空间中直线与平面之间的位置关系. 【分析】由直线AB⊥直线CD不成立,知A错误;由直线AB⊥平面BCD不成立,知B错误;由平面ABC⊥平面BDE,且平面ACD⊥平面BDE,知C正确;由平面ABD⊥平面BCD不成立,知D错误. 【解答】解:由题意知DC⊥BE,AB∩BE=E, ∴直线AB⊥直线CD不成立,故A错误; ∵AC⊥AB,∴AB与BC不垂直, ∴直线AB⊥平面BCD不成立,故B错误; ∵BE⊥DE,BE⊥AC,∴AC⊥平面BDE, ∴平面ABC⊥平面BDE,且平面ACD⊥平面BDE,故C正确; ∵平面ABD⊥平面BCD不成立,故D错误. 故选:C. 【点评】本题考查命题真假的判断,考查空间直线与直线、直线与平面、平面与平面的位置关系,是中档题. 3.已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=2x2﹣2x+1,则f(﹣1)=(
)A.3 B.﹣3 C.2 D.﹣2参考答案:A【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】分别将x赋值为1和﹣1,利用已知等式,集合函数得奇偶性,两式相加解得.【解答】解:令x=1,得f(1)+g(1)=1,令x=﹣1,得f(﹣1)+g(﹣1)=5,又f(x)是偶函数,g(x)是奇函数,所以f(﹣1)=f(1),g(﹣1)=﹣g(1),两式相加得:f(1)+f(﹣1)+g(1)+g(﹣1)=6,f(1)+f(1)+g(1)﹣g(1)=6,即2f(1)=6,所以f(﹣1)=3;故选A.【点评】本题考查了函数奇偶性得运用,利用方程得思想求得,属于基础题.4..函数在区间的简图是(
)A. B.C. D.参考答案:A【分析】根据函数解析式可得当x时,y=sin[(2]>0,故排除A,D;当x时,y=sin0=0,故排除C,从而得解.【详解】解:当时,,故排除A,D;当时,,故排除C;故选:B.【点睛】本题主要考查了正弦函数的图象和性质,考查了五点法作图,特值法,属于基础题.5.已知扇形的圆心角的弧度数为2,扇形的弧长为4,则扇形的面积为
(
)
A.2
B.4
C.8
D.16参考答案:B6.在平面直角坐标系中,若两点P,Q满足条件:①P,Q都在函数y=f(x)的图象上;②P,Q两点关于直线y=x对称,则称点对P,Q是函数y=f(x)的一对“和谐点对”(注:点对{P,Q}与{Q,P}看作同一对“和谐点对”)已知函数f(x)=,则此函数的“和谐点对”有()A.0对 B.1对 C.2对 D.3对参考答案:C【考点】进行简单的合情推理;奇偶函数图象的对称性;反函数.【分析】作出f(x)=log2x(x>0)关于直线y=x对称的图象C,判断C与函数f(x)=x2+3x+2(x≤0)的图象交点个数,可得答案.【解答】解:作出函数f(x)的图象,然后作出f(x)=log2x(x>0)关于直线y=x对称的图象C,如下图所示:由C与函数f(x)=x2+3x+2(x≤0)的图象有2个不同交点,所以函数的“和谐点对”有2对.故选C7.下列命题正确的是(
)A.若,则 B.若,则C.若,则
D.若,则参考答案:C8.当时,不等式(其中且)恒成立,则a的取值范围为(
)A. B. C.(1,2) D.(1,2]参考答案:D作出函数y=x2与y=loga(x+1)的图象如图,要使当x∈(0,1)时,不等式x2<loga(x+1)恒成立,则a>1且loga(1+1)=loga2≥1,解得1<a≤2.∴a的取值范围为(1,2].故选:D.
9.若直线x-y=2被圆(x-a)2+y2=4所截得的弦长为2,则实数a的值为(
).A.-1或
B.1或3 C.-2或6
D.0或4参考答案:D10.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是()A. B. C. D.参考答案:B【考点】直线的图象特征与倾斜角、斜率的关系;确定直线位置的几何要素.【分析】分别分析乌龟和兔子随时间变化它们的路程变化情况,即直线的斜率的变化.问题便可解答.【解答】解:对于乌龟,其运动过程可分为两段:从起点到终点乌龟没有停歇,其路程不断增加;到终点后等待兔子这段时间路程不变,此时图象为水平线段.对于兔子,其运动过程可分为三段:开始跑得快,所以路程增加快;中间睡觉时路程不变;醒来时追赶乌龟路程增加快.分析图象可知,选项B正确.故选B.二、填空题:本大题共7小题,每小题4分,共28分11.圆x2+y2﹣4x=0在点P(1,)处的切线方程为
.参考答案:x﹣y+2=0
【考点】圆的切线方程.【分析】求出圆的圆心坐标,求出切点与圆心连线的斜率,然后求出切线的斜率,解出切线方程.【解答】解:圆x2+y2﹣4x=0的圆心坐标是(2,0),所以切点与圆心连线的斜率:=﹣,所以切线的斜率为:,切线方程为:y﹣=(x﹣1),即x﹣y+2=0.故答案为:x﹣y+2=0.12.若直线被两平行线与所截的线段长为,则的倾斜角可以是:其中正确答案的序号是________参考答案:(1)(5)13.函数y=cos(x﹣)(x∈[,π])的最大值是,最小值是.参考答案:1,.【考点】三角函数的最值.【分析】根据x∈[,π],算出x﹣∈[﹣,],结合余弦函数的图象求出函数的最大值和最小值即可.【解答】解:∵x∈[,π],可得x﹣∈[﹣,],∴当x﹣=0时,即x=时,函数y=cos(x﹣)的最大值是1,当x﹣=,即x=时,函数y=cos(x﹣)的最小值是,故答案为:1,.14.设f(x)=1﹣2x2,g(x)=x2﹣2x,若,则F(x)的最大值为
.参考答案:【考点】3H:函数的最值及其几何意义.【分析】求出F(x)的解析式,在每一段上分别求最大值,综合得结论.【解答】解:有已知得F(x)==,上的最大值是,在x≥1上的最大值是﹣1,y=x2﹣2x在上无最大值.故则F(x)的最大值为故答案为:.15.若tanα=3,,则tan(α﹣β)等于
.参考答案:【考点】两角和与差的正切函数.【分析】由正切的差角公式tan(α﹣β)=解之即可.【解答】解:tan(α﹣β)===,故答案为.16.附加题(本大题共10分,每小题5分)已知AB是单位圆上的弦,是单位圆上的动点,设的最小值是,若的最大值满足,则的取值范围是
.参考答案:17.
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分8分)已知函数y=-ax-3()(1)若a=2,求函数的最大最小值;(2)若函数在定义域内是单调函数,求a取值的范围。参考答案:(1)最大值是32,最小值是-4;(2)或.19.设函数的定义域为.(1)若,求实数t的取值范围;(2)求的最大值和最小值,并求出取到最值时对应的x的值.参考答案:(1)因为,则..............................3分(2)令,则当时,,此时,即:当时,,此时,即:...............10分20.对于函数若存在,使得成立,则称为的天宫一号点,已知函数的两个天宫一号点分别是和2.(1)求,的值及的表达式;(2)当的定义域是时,求函数的最大值.参考答案:(1)依题意得,,即……………………2分解得……………………4分∴.……………………5分(2)①当区间在对称轴左侧时,即,也即时,的最大值为;………………7分②当对称轴在内时,即,也即时,的最大值为;…9分③当在右侧时,即时,…………11分的最大值为,所以………………12分21.(本小题满分12分)已知函数,(1)求的对称轴方程;(2)用“五点法”画出函数在一个周期内的简图;(3)若,设函数,求的值域。参考答案:(1)
令,得,所求函数对称轴方程为(2)列表0010-10
(3),则,设,则函数当时,;当时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专业技术智能监控系统布设协议2024版B版
- 个性化2024版动力煤托盘协议示例版
- 专业教师2024年度聘用协议范例版B版
- 阅读理解技巧讲座
- 二零二四年云服务租赁协议
- 2025年度科技园区场地无偿使用及知识产权共享协议4篇
- 2025年度叉车维修及配件供应一体化服务合同4篇
- 2025年度场岗位员工保密协议执行细则4篇
- 专属委托销售代表协议样式(2024)版A版
- 2025年度影视基地场地租赁合同24篇
- Unit 3 We should obey the rules. Lesson15(说课稿)-2023-2024学年人教精通版英语五年级下册
- 绵阳市高中2022级(2025届)高三第二次诊断性考试(二诊)语文试卷(含答案)
- 2024年聊城市东昌府区中医院招聘备案制工作人员考试真题
- 2025年极兔速递有限公司招聘笔试参考题库含答案解析
- 一般固废处理流程
- 《健康体检知识》课件
- 《AIGC应用实战(慕课版)》-课程标准
- 政府机关办公用品配送方案
- 生产计划主管述职报告
- 永威置业项目交付前风险排查表
- 《储能材料与器件》课程教学大纲(新能源材料与器件专业)
评论
0/150
提交评论