高考数学一轮复习 第八章 立体几何 课时达标检测(三十六)直线、平面平行的判定与性质 理-人教版高三数学试题_第1页
高考数学一轮复习 第八章 立体几何 课时达标检测(三十六)直线、平面平行的判定与性质 理-人教版高三数学试题_第2页
高考数学一轮复习 第八章 立体几何 课时达标检测(三十六)直线、平面平行的判定与性质 理-人教版高三数学试题_第3页
高考数学一轮复习 第八章 立体几何 课时达标检测(三十六)直线、平面平行的判定与性质 理-人教版高三数学试题_第4页
高考数学一轮复习 第八章 立体几何 课时达标检测(三十六)直线、平面平行的判定与性质 理-人教版高三数学试题_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时达标检测(三十六)直线、平面平行的判定与性质小题常考题点——准解快解]1.(2018·河北保定模拟)有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是()A.1 B.2C.3 D.4解析:选A命题①l可以在平面α内,是假命题;命题②直线a与平面α可以是相交关系,是假命题;命题③a可以在平面α内,是假命题;命题④是真命题.2.(2018·湖南湘中名校联考)已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若m∥α,m⊂β,则α∥βC.若α⊥γ,β⊥γ,则α∥β D.若m⊥α,n⊥α,则m∥n解析:选DA中,两直线可能平行,相交或异面;B中,两平面可能平行或相交;C中,两平面可能平行或相交;D中,由线面垂直的性质定理可知结论正确,故选D.3.设m,n是不同的直线,α,β是不同的平面,且m,n⊂α,则“α∥β”是“m∥β且n∥β”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析:选A若m,n⊂α,α∥β,则m∥β且n∥β;反之若m,n⊂α,m∥β且n∥β,则α与β相交或平行,即“α∥β”是“m∥β且n∥β”的充分不必要条件.4.(2018·襄阳模拟)如图,在正方体ABCD­A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()A.MN与CC1垂直B.MN与AC垂直C.MN与BD平行D.MN与A1B1平行解析:选D如图所示,连接AC,C1D,BD,则MN∥BD,而C1C⊥BD,故C1C⊥MN,故A、C正确,D错误,又因为AC⊥BD,所以MN⊥5.(2018·湖南长郡中学质检)如图所示的三棱柱ABC­A1B1C1中,过A1B1的平面与平面ABC交于DE,则DE与AB的位置关系是()A.异面 B.平行C.相交 D.以上均有可能解析:选B在三棱柱ABC­A1B1C1中,AB∥A1B1∵AB⊂平面ABC,A1B1⊄平面ABC,∴A1B1∥平面ABC,∵过A1B1的平面与平面ABC交于DE.∴DE∥A1B1,∴DE∥AB.6.已知正方体ABCD­A1B1C1D1①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.解析:连接AD1,BC1,AB1,B1D1,C1D1,BD,因为AB綊C1D1,所以四边形AD1C1B为平行四边形,故AD1∥BC1,从而①正确;易证BD∥B1D1,AB1∥DC1,又AB1∩B1D1=B1,BD∩DC1=D,故平面AB1D1∥平面BDC1,从而②正确;由图易知AD1与DC1异面,故③错误;因AD1∥BC1,AD1⊄平面BDC1,BC1⊂平面BDC1,故AD1∥平面BDC1,故④正确.答案:①②④7.如图所示,在四面体ABCD中,M,N分别是△ACD,△BCD的重心,则四面体的四个面所在平面中与MN平行的是________________.解析:连接AM并延长,交CD于点E,连接BN,并延长交CD于点F,由重心性质可知,E,F重合为一点,且该点为CD的中点E,连接MN,由eq\f(EM,MA)=eq\f(EN,NB)=eq\f(1,2),得MN∥AB.因此,MN∥平面ABC且MN∥平面ABD.答案:平面ABC、平面ABD8.如图所示,三棱柱ABC­A1B1C1的侧面BCC1B1是菱形,设D是A1C1上的点且A1B∥平面B1CD,则A1D∶DC1解析:设BC1∩B1C=O,连接OD∵A1B∥平面B1CD且平面A1BC1∩平面B1CD=OD,∴A1B∥OD,∵四边形BCC1B1是菱形,∴O为BC1的中点,∴D为A1C1的中点,则A1D∶DC1答案:1[大题常考题点——稳解全解]1.如图,ABCD与ADEF均为平行四边形,M,N,G分别是AB,AD,EF的中点.求证:(1)BE∥平面DMF;(2)平面BDE∥平面MNG.证明:(1)连接AE,则AE必过DF与GN的交点O,连接MO,则MO为△ABE的中位线,所以BE∥MO,又BE⊄平面DMF,MO⊂平面DMF,所以BE∥平面DMF.(2)因为N,G分别为平行四边形ADEF的边AD,EF的中点,所以DE∥GN,又DE⊄平面MNG,GN⊂平面MNG,所以DE∥平面MNG.又M为AB的中点,所以MN为△ABD的中位线,所以BD∥MN,又MN⊂平面MNG,BD⊄平面MNG,所以BD∥平面MNG,又DE,BD⊂平面BDE,DE∩BD=D,所以平面BDE∥平面MNG.2.(2018·长春质检)如图,在四棱锥P­ABCD中,底面ABCD是菱形,PD⊥平面ABCD,点D1为棱PD的中点,过D1作与平面ABCD平行的平面与棱PA,PB,PC相交于点A1,B1,C1,∠BAD=60°.(1)求证:B1为PB的中点;(2)已知棱锥的高为3,且AB=2,AC,BD的交点为O,连接B1O.求三棱锥B1­ABO外接球的体积.解:(1)证明:连接B1D1.由题意知,平面ABCD∥平面A1B1C1D1,平面PBD∩平面ABCD=BD平面PBD∩平面A1B1D1=B1D1,则BD∥B1D1,即B1D1为△PBD的中位线,即B1为PB的中点.(2)由(1)可得,OB1=eq\f(3,2),AO=eq\r(3),BO=1,且OA⊥OB,OA⊥OB1,OB⊥OB1,即三棱锥B1­ABO的外接球为以OA,OB,OB1为长,宽,高的长方体的外接球,则该长方体的体对角线长d=eq\r(12+\r(3)2+\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,2)))2)=eq\f(5,2),即外接球半径R=eq\f(5,4).则三棱锥B1­ABO外接球的体积V=eq\f(4,3)πR3=eq\f(4,3)×π×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(5,4)))3=eq\f(125π,48).3.如图所示,在正方体ABCD­A1B1C1D1中,E,F,G,H分别是BC,CC1,C1D1,A1A(1)BF∥HD1;(2)EG∥平面BB1D1D;(3)平面BDF∥平面B1D1H.证明:(1)如图所示,取BB1的中点M,连接MH,MC1,易证四边形HMC1D1是平行四边形,∴HD1∥MC1.又∵MC1∥BF,∴BF∥HD1.(2)取BD的中点O,连接EO,D1O,则OE綊eq\f(1,2)DC,又D1G綊eq\f(1,2)DC,∴OE綊D1G,∴四边形OEGD1是平行四边形,∴GE∥D1O.又GE⊄平面BB1D1D,D1O⊂平面BB1D1D,∴EG∥平面BB1D1D.(3)由(1)知BF∥HD1,又BD∥B1D1,B1D1,HD1⊂平面B1D1H,BF,BD⊂平面BDF,且B1D1∩HD1=D1,DB∩BF=B,∴平面BDF∥平面B1D1H.4.如图,四棱锥P­ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD.(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.解:(1)证明:取PA的中点H,连接EH,DH,因为E为PB的中点,所以EH∥AB,EH=eq\f(1,2)AB,又AB∥CD,CD=eq\f(1,2)AB,所以EH∥CD,EH=CD,因此四边形DCEH是平行四边形,所以CE∥DH,又DH⊂平面PAD,CE⊄平面PAD,因此CE∥平面PAD.(2)存在点F为AB的中点,使平面PAD∥平面CE

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论