版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省福州市金桥高级中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数的部分图象如图所示,=
A.
B.
C.2
D.1参考答案:B2.设集合,则集合M的真子集个数为(
)A.8
B.7
C.4
D.3参考答案:B集合M={x|x|x2﹣2x﹣3<0,x∈Z}={x|﹣1<x<3,x∈Z}={0,1,2},所以集合M的真子集个数为:23﹣1=7个.故选:B.
3.函数的零点所在的大致区间是(
)
A、(6,7)
B、(7,8)
C、(8,9)
D、(9,10)参考答案:D略4.如果幂函数的图象经过点,则的值等于(
)
A.16
B.2
C.
D.参考答案:D5.函数是奇函数,则等于(
)A.
B.
C.
D.参考答案:D根据题意,若函数为奇函数,则有即故故选D.
6.在△ABC中,已知,则等于()A.2
B.
C.1
D.4参考答案:A7.设,是两条不同的直线,是一个平面,则下列命题正确的是(
)
A.若,,则
B.若,,则
C.若,,则
D.若,,则参考答案:A略8.已知函数在上是减函数,在上是增函数,若函数在上的最小值为10,则m的取值范围是(
)A. B. C. D.参考答案:A略9.三个数大小的顺序是(
)A.B.
C.
D.参考答案:B10.记a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,则四个数的大小关系是()A.a<c<b<dB.c<d<a<bC.b<d<c<aD.d<b<a<c参考答案:C【考点】对数值大小的比较.【分析】由tan1>1>sin1>cos1>0,得到a=logsin1cos1==logcos1sin1>logsin1sin1=1;由lgtan1>0>lgsin1>lgcos1,得到b=logsin1tan1=<=logcos1tan1=d<0,由此能求出结果.【解答】解:∵tan1>1>sin1>cos1>0,a=logsin1cos1,b=logsin1tan1,c=logcos1sin1,d=logcos1tan1,∴a=logsin1cos1==logcos1sin1>logsin1sin1=1,∴a>c>0.又lgtan1>0>lgsin1>lgcos1,b=logsin1tan1=<=logcos1tan1=d<0,∴0>d>b.综上可得:a>c>0>d>b.∴b<d<c<a.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.已知定义在R上的偶函数f(x)在[0,+∞)上递减,且f(1)=0,则不等式f(log4x)+f(logx)≥0的解集为.参考答案:[,4]【考点】奇偶性与单调性的综合.【分析】根据对数的运算性质进行化简,结合函数奇偶性和单调性的关系将不等式进行转化求解即可.【解答】解:∵定义在R上的偶函数f(x)在[0,+∞)上递减,且f(1)=0,∴不等式f(log4x)+f(logx)≥0等价为不等式f(log4x)+f(﹣log4x)≥0即2f(log4x)≥0,则f(|log4x|)≥f(1),即|log4x|≤1,即﹣1≤log4x≤1,则﹣≤x≤4,即不等式的解集为[,4],故答案为:[,4].【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性的性质将不等式进行转化是解决本题的关键.12.若函数f(x)=2x+1的反函数为f﹣1(x),则f﹣1(﹣2)=.参考答案:考点:反函数.专题:计算题.分析:问题可转化为已知f(x0)=﹣2,求x0的值,解方程即可解答:解:设f(x0)=﹣2,即2x0+1=﹣2,解得故答案为点评:本题考查反函数的定义,利用对应法则互逆可以避免求解析式,简化运算.13.若是奇函数,则实数
参考答案:14.函数的定义域为________;参考答案:
15.若函数y=,则使得函数值为10的x的集合为
.参考答案:{﹣3}【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数解析式便知y=10需带入y=x2+1(x≤0),从而便可求出对应的x值,从而得出使得函数值为10的x的集合.【解答】解:函数值为10>0;∴令x2+1=10;∴x=﹣3;∴使得函数值为10的x的集合为{﹣3}.故答案为:{﹣3}.【点评】考查对于分段函数,已知函数值求自变量值时,需判断每段函数的范围,从而判断代入哪段函数.16.(5分)()+log3+log3=.参考答案:考点: 对数的运算性质.专题: 函数的性质及应用.分析: 直接利用分数指数幂的运算法则,对数的运算法则求解即可.解答: ()+log3+log3==.故答案为:.点评: 本题考查分数指数幂的运算法则,对数的运算法则,考查计算能力.17.三角形一边长为14,它对的角为60°,另两边之比为8:5,则此三角形面积为____.参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本题满分13分,第1问7分,第2问6分)在△ABC中,a,b,c分别为内角A,B,C的对边,且(Ⅰ)求A的大小;(Ⅱ)求的最大值.参考答案:(Ⅰ)由已知,根据正弦定理得即
由余弦定理得
故,A=120°
…………7分(Ⅱ)由(Ⅰ)得:
故当B=30°时,sinB+sinC取得最大值1。
…………13分19.已知函数的定义域为,且同时满足下列条件:⑴是奇函数;⑵在定义域上单调递减;⑶.求的取值范围.参考答案:20.在△ABC中,sinB=sinAcosC,且△ABC的最大边长为12,最小角的正弦等于.(1)判断△ABC的形状;(2)求△ABC的面积.参考答案:【考点】HP:正弦定理;HR:余弦定理.【分析】(1)由三角形的内角和定理得到B=π﹣(A+C),代入已知等式左侧,利用诱导公式及两角和与差的正弦函数公式化简,整理后可得cosAsinC=0,结合sinC≠0,可得cosA=0,又A∈(0,π),可得A=,即△ABC为直角三角形.(2)由题意,利用正弦定理可求最小边长,利用勾股定理可求另一直角边,利用三角形面积公式即可得解.【解答】解:(1)在△ABC中,∵sinB=sin[π﹣(A+C)]=sin(A+C)=sinAcosC+cosAsinC=sinAcosC,∴cosAsinC=0,∵C为三角形内角,sinC≠0,∴cosA=0,∴由A∈(0,π),可得A=,即△ABC为直角三角形.(2)∵由(1)得A=,由题意△ABC的最大边长为12,最小角的正弦等于.∴设最小边长为x,则由正弦定理可得:=,解得:x=4,∴S△ABC=×4×=16.21.(12分)如图△ABC,点D是BC中点,=2,CF和AD交于点E,设=a,=b.(1)以a,b为基底表示向量,.(2)若=λ,求实数λ的值.参考答案:【考点】平面向量数量积的运算.【分析】(1)根据向量的加减的几何意义即可求出,(2)根据向量共线定理即可求出.【解答】解:(1)因为点D是BC中点,所以2=+,即=2﹣,所以=﹣=2﹣﹣=2﹣,(2)=λ=(+)=+,因为点C,E,F共线,所以+λ=1,所以λ=.【点评】本题考查平面向量的基本定理及其意义,考查学生的计算能力,比较基础.22.(本小题满分14分)已知,函数.
(1)求的对称轴方程;
(2)若对任意实数,不等式恒成立,求实数的取值范围.参考答案:(1)由及,,可得
…………2分
…………3分
…………4分
令,,解得,.
…………5分
所以,的对称轴方程为,.
…………6分
(2)∵,∴.
…………7分又∵在上是增函数,∴.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年折叠筷子:课堂演示与环保的完美结合
- 2023年9月15日中级注册安全工程师-安全生产法律法规真题
- 人教部编版《道德与法治》二年级上册第3课《欢欢喜喜庆国庆》精美课件(第2课时)
- 智能卫浴用品制造业的账务处理-记账实操
- 老旧小区安装电梯后费用分担协议-物业管理
- 2024版《工程制图》教案:探索与创新
- 2024年《教育学原理》课件在高等教育中的作用
- 2024年HAZOP培训课件:深入解析
- 2024年《燃烧与灭火》教案设计:教育与科技的结合
- 5种“谢谢你”的表达方法
- 2024江苏省沿海开发集团限公司招聘23人高频难、易错点500题模拟试题附带答案详解
- 2024年计算机二级WPS考试题库380题(含答案)
- 22G101三维彩色立体图集
- 大学生安全文化智慧树知到期末考试答案章节答案2024年中南大学
- 建筑施工安全生产治本攻坚三年行动方案(2024-2026年)
- 人教版小学英语单词表(完整版)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 2009年勒流街道小学即席作文竞赛获奖结果(精)
- 三年级地方课程半岛工程和温州大桥教材
- 人民医院便民惠民措施服务工作开展情况总结
- 大学生健康人格与心理健康PPT课件
评论
0/150
提交评论