版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省洛阳市元村中学高一数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知函数,若对任意的,不等式恒成立,则实数的取值范围是(
)A.
B.
C.
D.参考答案:C2.设不等式3﹣2x<0的解集为M,下列正确的是()A.0∈M,2∈M B.0?M,2∈M C.0∈M,2?M D.0?M,2?M参考答案:B【考点】元素与集合关系的判断.【专题】集合.【分析】先解不等式确定出集合M,然后根据选项判断即可.【解答】解:由3﹣2x<0得:.所以.显然0?M,2∈M.故选B【点评】本题考查了集合与元素间的关系,属于基础题.要注意符号不要用错.3...某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为
.
参考答案:略4.在印度有一个古老的传说:舍罕王打算奖赏国际象棋的发明人一宰相西萨·班·达依尔.国王问他想要什么,他对国王说:“陛下,请您在这张棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给2粒,第3小格给4粒,以后每一小格都比前一小格加一倍.请您把这样摆满棋盘上所有的64格的麦粒,都赏给您的仆人吧!”国王觉得这要求太容易满足了,就命令给他这些麦粒当人们把一袋一袋的麦子搬来开始计数时,国王才发现:就是把全印度甚至全世界的麦粒全拿来,也满足不了那位宰相的要求,那么,宰相要求得到的麦粒到底有多少粒?下面是四位同学为了计算上面这个问题而设计的程序框图,其中正确的是(
)A B C D参考答案:C5.若a,b,c成等比数列,m是a,b的等差中项,n是b,c的等差中项,则
A.4
B.3
C.2
D.1
参考答案:C6.已知f(x)是定义在R上的偶函数,在[0,+∞)上是增函数,若a=f(sin),b=f(cos),c=f(tan),则()A.a>b>c B.c>a>b C.b>a>c D.c>b>a参考答案:B【考点】奇偶性与单调性的综合.【分析】根据题意,由三角函数的诱导公式可得a=f(sin)=f(﹣sin),b=f(﹣cos),结合函数的奇偶性可得a=f(sin),b=f(cos),结合三角函数的定义分析可得0<cos<sin<1<tan,结合函数的奇偶性即可得答案.【解答】解:根据题意,sin=sin(2π﹣)=﹣sin,则a=f(sin)=f(﹣sin),cos=cos(π﹣)=﹣cos,b=f(﹣cos),又由函数f(x)是定义在R上的偶函数,则a=f(sin)=f(﹣sin)=f(sin),b=f(﹣cos)=f(cos),又由<<,则有0<cos<sin<1<tan,又由函数在[0,+∞)上是增函数,则有c>a>b;故选:B.7.函数y=e|x|﹣x3的大致图象是()A. B. C. D.参考答案:A【考点】函数的图象.【分析】根据函数值得变化情况直接判断即可.【解答】解:当x≤0时,y>1,故选:A8.设,则(
)A.
B.
C.
D.参考答案:D9.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有(
)A.3个
B.4个
C.5个
D.6个参考答案:A10.已知函数的一部分图象(如右图所示),则函数可以是(
)
参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.定义在(﹣∞,0)∪(0,+∞)的奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式f(x)<0的解集是.参考答案:{x|x<﹣1或0<x<1}【考点】奇偶性与单调性的综合.【分析】先根据其为奇函数,得到在(﹣∞,0)上的单调性;再借助于f(﹣1)=﹣f(1)=0,即可得到结论.【解答】解:∵定义在(﹣∞,0)∪(0,+∞)的奇函数,且在(0,+∞)上是增函数,∴在(﹣∞,0)上也是增函数;又∵f(﹣1)=﹣f(1)=0.∴f(x)<0的解集为:{x|x<﹣1或0<x<1}.故答案为:{x|x<﹣1或0<x<1}.12.圆心为点,且经过原点的圆的方程为
参考答案:13.将函数y=sin(2x﹣)的图象先向左平移个单位,再将图象上各点的横坐标变为原来的倍(纵坐标不变),那么所得图象的解析式为y=
.参考答案:sin(4x+)
【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求函数y=sin(2x﹣)的图象先向左平移,图象的函数表达式,再求图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式.【解答】解:将函数y=sin(2x﹣)的图象先向左平移,得到函数y=sin[2(x+)﹣]=sin(2x+)的图象,将所得图象上所有的点的横坐标变为原来的倍(纵坐标不变),则所得到的图象对应的函数解析式为:y=sin(4x+)故答案为:sin(4x+).14.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是_________.参考答案:15.已知函数在上是增函数,则m范围是
▲
.参考答案:16.已知向量=(1,2),向量=(x,﹣1),若向量与向量夹角为钝角,则x的取值范围为.参考答案:(﹣∞,﹣)∪(﹣,2)【考点】9R:平面向量数量积的运算.【分析】向量与向量夹角为钝角,则?<0,且与不共线,解得x的范围即可.【解答】解:向量=(1,2),向量=(x,﹣1),向量与向量夹角为钝角,∴?<0,且与不共线,∴,解得x<2且x≠﹣,故x的取值范围为(﹣∞,﹣)∪(﹣,2),故答案为:(﹣∞,﹣)∪(﹣,2)17.已知集合,,则
.参考答案:{1,2}三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数且(1)讨论的奇偶性;(2)求的值域.参考答案:略19.(10分)已知函数,求:(1)函数的最小正周期;(2)函数的最大值及对应自变量的集合。参考答案:解:,
……5分(1)T=
……7分
(2)取最大值,只需,即,当函数取最大值时,自变量的集合为
…..10分20.(14分)已知方程x2+y2-2x-4y+m=0.(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M、N两点,且OM⊥ON(O为坐标原点),求m;(3)在(2)的条件下,求以MN为直径的圆的方程.参考答案:(1)(x-1)2+(y-2)2=5-m,∴m<5.....3分(2)设M(x1,y1),N(x2,y2),则x1=4-2y1,x2=4-2y2,则x1x2=16-8(y1+y2)+4y1y2.∵OM⊥ON,∴x1x2+y1y2=0.∴16-8(y1+y2)+5y1y2=0
①(3)以MN为直径的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0即x2+y2-(x1+x2)x-(y1+y2)y=0∴所求圆的方程为......14分21.已知函数的部分图象如图所示.(1)求函数f(x)的解析式;(2)当,,若g(x)=1+2cos2x,求g(x0)的值;(3)若h(x)=1+2cos2x+a,且方程f(x)﹣h(x)=0在上有解,求实数a的取值范围.参考答案:【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】计算题;转化思想;三角函数的图像与性质.【分析】(1)由图求出A,ω,φ的值,可得函数f(x)的解析式;(2)根据,,求出x0,代入g(x)=1+2cos2x,可求g(x0)的值;(3)(3),,进而得到答案.【解答】解:(1)由图知A=2,(解法只要合理,均可给分)(1分),(2分)∴f(x)=2sin(2x+φ),∴,∴,,(3分)∴;
(4分)(2),(6分);
(8分)(3),,(9分)=,(10分)∵,(11分)∴a∈[﹣2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版家用空调租赁及安装维修一体化合同3篇
- 二零二五版国有土地储备中心资产置换专项合同3篇
- 二零二五年智慧环保产业园区建设补贴协议范本3篇
- 二零二五版旅游度假区与旅游院校合作共建人才培养合同6篇
- 武汉华夏理工学院《土木工程施工技术A》2023-2024学年第一学期期末试卷
- 二零二五年红酒年份品鉴代理销售授权协议3篇
- 2024食用油绿色环保包装设计制作合同3篇
- 2024年项目合作协议书模板
- 2024年食品工厂代加工食品安全责任合同范本2篇
- 二零二五年度车位买卖与车位抵押合同范本2篇
- 2023年河南省公务员录用考试《行测》真题及答案解析
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 山西省太原市重点中学2025届物理高一第一学期期末统考试题含解析
- 充电桩项目运营方案
- 2024年农民职业农业素质技能考试题库(附含答案)
- 高考对联题(对联知识、高考真题及答案、对应练习题)
- 新版《铁道概论》考试复习试题库(含答案)
- 【律师承办案件费用清单】(计时收费)模板
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- Unit1FestivalsandCelebrations词汇清单高中英语人教版
- 2024年上海市中考语文试题卷(含答案)
评论
0/150
提交评论