版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖南省益阳市南大膳镇中学高一数学文知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知,则使得都成立的取值范围是(
)A.(0,)
B.(0,)
C.(0,)
D.(0,)参考答案:B2.如图所示,已知在四面体ABCD中,E、F分别是AC、BD的中点,若CD=2AB=4,EFAB,则EF与CD所成的角为()A、900B、450C、600D、300参考答案:D略3.下列说法中正确的是(▲)A.有两个面相互平行,其余各面均为平行四边形的几何体是棱柱B.棱柱被平面分成的两部分可以都是棱锥C.用一个平面去截棱锥,底面和截面之间的部分组成的几何体是棱台D.棱锥被平面分成的两部分不可能都是棱锥参考答案:B4.已知直线,,若,则a的值为(
)A.或 B. C. D.参考答案:B【分析】由两直线平行的等价条件列等式求出实数的值.【详解】,则,整理得,解得,故选:B.【点睛】本题考查利用两直线平行求参数的值,解题时要利用直线平行的等价条件列等式求解,一般是转化为斜率相等来求解,考查运算求解能力,属于基础题.5.已知椭圆的对称轴是坐标轴,离心率e=,长轴长为6,则椭圆的方程()A.B.C.D.参考答案:D【考点】椭圆的简单性质.【专题】计算题;方程思想;数学模型法;圆锥曲线的定义、性质与方程.【分析】由已知求出a,c的值,结合隐含条件求得b,则椭圆方程可求.【解答】解:由题意可知,,2a=6,a=3,∴c=2,则b2=a2﹣c2=9﹣4=5,∴椭圆的方程为或.故选:D.【点评】本题考查椭圆的简单性质,考查了椭圆方程的求法,是基础题.6.已知函数f(x)在R上为奇函数,对任意的,总有且f(1)=0,则不等式<0的解集为
A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)参考答案:D略7.一船以每小时km的速度向东行驶,船在A处看到一灯塔B在北偏东60°,行驶4小时后,船到达C处,看到这个灯塔在北偏东15°,这时船与灯塔的距离为(
)A.60km
B.km
C.km
D.30km参考答案:A画出图形如图所示,在△ABC中,,由正弦定理得,∴,∴船与灯塔的距离为60km.故选A.
8.如图,在四边形ABCD中,,且,,记向量则=()A. B.C. D.参考答案:B试题分析:作于,与,由题意,且,记向量,,故选B.考点:(1)向量在几何中的应用(2)向量的加法及其几何意义9.在等差数列中,若,则的值为
A.6
B.8
C.10
D.16参考答案:B10.(5分)已知函数y=f(x)的图象是连续不断的曲线,且有如下的对应值表x123456y124.435﹣7414.5﹣56.7﹣123.6则函数y=f(x)在区间上的零点至少有() A. 2个 B. 3个 C. 4个 D. 5个参考答案:B考点: 函数的零点.专题: 函数的性质及应用.分析: 根据根的存在定理,判断函数值的符号,然后判断函数零点个数即可.解答: 解:依题意,∵f(2)>0,f(3)<0,f(4)>0,f(5)<0,∴根据根的存在性定理可知,在区间(2,3)和(3,4)及(4,5)内至少含有一个零点,故函数在区间上的零点至少有3个,故选B.点评: 本题主要考查函数零点个数的判断,用二分法判断函数的零点的方法,比较基础.二、填空题:本大题共7小题,每小题4分,共28分11.下列函数:y=;y=x2;y=|x|-1;其中有2个零点的函数的序号是_________.参考答案:略12.已知一圆柱内接于球O,且圆柱的底面直径与母线长均为2,则球O的表面积为____.参考答案:13.在中,若,则角C=_________.参考答案:14.比较大小:、、均大于零,且,则________。参考答案:略15.(3分)设f(x)为定义在R上的奇函数,当x≥0时,f(x)=log2(x+1)+m+1,则f(﹣3)=
.参考答案:﹣2考点: 函数的值.专题: 函数的性质及应用.分析: 根据奇函数性质f(0)=0求得m的值,由f(﹣3)=﹣f(3),再由已知表达式即可求得f(3).解答: 解:f(x)为定义在R上的奇函数,所以f(0)=m+1=0,∴m=﹣1,f(﹣3)=﹣f(3)=﹣log2(3+1)=﹣log24=﹣2.故答案为:﹣2.点评: 本题考查利用奇函数性质求函数值,考查学生计算能力,属基础题.16.点(2,3,4)关于yoz平面的对称点为。参考答案:(-2,3,4)17.若命题“,使得”是假命题,则实数的取值范围为__________.参考答案:[-1,3]若命题“,使得”是假命题,则对,都有,∴,即,解得,即实数的取值范围为[-1,3].三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.写出函数的值域、单调递增区间、对称轴方程、对称中心坐标(只需写出答案即可),并用五点法作出该函数在一个周期内的图象.参考答案:【考点】GL:三角函数中的恒等变换应用;HI:五点法作函数y=Asin(ωx+φ)的图象.【分析】先化简f(x)的解析式,根据正弦函数的图象与性质列出不等式或等式得出各结论.【解答】解:y=﹣(cos2x﹣sin2x)+2sinxcosx=﹣cos2x+sin2x=2sin(2x﹣),∴函数的值域:;令﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,∴函数的递增区间:,k∈Z;令2x﹣=,解得x=+,∴函数的对称轴:x=+,k∈Z;令2x﹣=kπ得x=+,∴函数的对称中心:(+,0),k∈Z;作图如下:(1)列表:2x﹣0π2πxy020﹣20作出图象如下:19.一种放射性元素,最初的质量为,按每年衰减.(1)求年后,这种放射性元素的质量与的函数关系式;(2)求这种放射性元素的半衰期(质量变为原来的时所经历的时间).()参考答案:解:(1)最初的质量为,经过年,
…………2分经过年,
经过年,
…………
6分(2)解方程
…………
8分
两边取常用对数
………
10分
即这种放射性元素的半衰期约为年.
…………12分
略20.(10分)如图,在正方体ABCD﹣A1B1C1D1中,E、F为棱AD、AB的中点.(Ⅰ)求证:EF∥平面CB1D1;(Ⅱ)求证:平面CAA1C1⊥平面CB1D1.参考答案:考点: 直线与平面平行的判定;平面与平面垂直的判定.专题: 证明题.分析: (Ⅰ)欲证EF∥平面CB1D1,根据直线与平面平行的判定定理可知只需证EF与平面CB1D1内一直线平行,连接BD,根据中位线可知EF∥BD,则EF∥B1D1,又B1D1?平面CB1D1,EF?平面CB1D1,满足定理所需条件;(Ⅱ)欲证平面CAA1C1⊥平面CB1D1,根据面面垂直的判定定理可知在平面CB1D1内一直线与平面CAA1C1垂直,而AA1⊥平面A1B1C1D1,B1D1?平面A1B1C1D1,则AA1⊥B1D1,A1C1⊥B1D1,满足线面垂直的判定定理则B1D1⊥平面CAA1C1,而B1D1?平面CB1D1,满足定理所需条件.解答: (Ⅰ)证明:连接BD.在正方体AC1中,对角线BD∥B1D1.又因为E、F为棱AD、AB的中点,所以EF∥BD.所以EF∥B1D1.(4分)又B1D1?平面CB1D1,EF?平面CB1D1,所以EF∥平面CB1D1.(7分)(Ⅱ)因为在正方体AC1中,AA1⊥平面A1B1C1D1,而B1D1?平面A1B1C1D1,所以AA1⊥B1D1.(10分)又因为在正方形A1B1C1D1中,A1C1⊥B1D1,所以B1D1⊥平面CAA1C1.(12分)又因为B1D1?平面CB1D1,所以平面CAA1C1⊥平面CB1D1.(14分)点评: 本题主要考查线面平行的判定定理和线面垂直的判定定理.考查对基础知识的综合应用能力和基本定理的掌握能力.21.(12分)计算下列各题的值.(1)已知函数,且,计算的值;(2)设,且,求的值.参考答案:22.(12分)已知函数y=f(x),若存在x0,使得f(x0)=x0,则称x0是函数y=f(x)的一个不动点,设二次函数f(x)=ax2+(b+1)x+b﹣2.(1)当a=2,b=1时,求函数f(x)的不动点;(2)若对于任意实数b,函数f(x)恒有两具不同的不动点,求实数a的取值范围.参考答案:考点: 函数恒成立问题.专题: 函数的性质及应用.分析: (1)当a=2,b=1时,解方程f(x0)=x0,即可求函数f(x)的不动点;(2)根据函数f(x)恒有两具不同的不动点,转化为二次函数和判别式之间的关系,即可求实数a的取值范围.解答: (1)当a=2,b=1时,f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度高新技术企业公司管理协议书3篇
- 二零二五年度环保产业投资全新期权合同3篇
- 2025年度办公楼智能化办公环境工装装饰施工合同2篇
- 二零二五年度宠物寄养宠物宠物用品销售服务协议2篇
- 2025年度车库租赁合同模板(含车位租赁与停车场智能化改造)3篇
- 二零二五年度公司股东内部关于企业对外投资决策的共识协议3篇
- 2025年度公司管理人员离职交接与聘用合同3篇
- 二零二五年度农村土地坟地租赁与祭祀活动管理合同2篇
- 2025年度养殖产业互联网平台合作协议3篇
- 2025年度农机购置服务包合同2篇
- 《个案工作介入涉罪未成年人的家庭帮教研究》
- 统编版(2024新版)七年级上册道德与法治期末综合测试卷(含答案)
- 文化创意合作战略协议
- 国家开放大学法学本科《商法》历年期末考试试题及答案题库
- 2024年妇保科工作总结及计划
- 北京理工大学《数据结构与算法设计》2022-2023学年第一学期期末试卷
- 锚杆(索)支护工技能理论考试题库200题(含答案)
- 影视后期制作团队薪酬激励方案
- 2024年有限合伙股权代持
- 广东珠海市驾车冲撞行人案件安全防范专题培训
- 花城版一年级上册音乐 第3课 《国旗国旗真美丽》(教案)
评论
0/150
提交评论