版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
二章目标识别二章目标识别1目标识别怎样识别图像中物体,如汽车、牛等?目标识别怎样识别图像中物体,如汽车、牛等?2目标识别的应用目标识别的应用3难点之一:如何鲁棒识别?难点之一:如何鲁棒识别?4类内差异()类内差异()5类间相似性()类间相似性()6难点之二:计算量大一幅图像中像素个数多,目前每秒约产生像素的图像视频数据。 图片搜索中已有几十亿幅图像 全球数字照相机一年产生亿张以上的图片(年) 全球一年销售约亿部照相手机()人的物体识别能力是强大的 灵长类动物约使用大脑皮层的一半来处理视觉信息[] 可以识别种物体 物体姿态可允许度以上的自由度。难点之二:计算量大一幅图像中像素个数多,目前每秒约产生像素的7难点之三:如何在小样本条件下学习难点之三:如何在小样本条件下学习8物体识别方法检测().不检测表示() 颜色、纹理、边缘、梯度、局部特征、深度、运动等等。分类() 近邻() 神经网络() 支持向量机() (等) 隐马尔科夫模型() 其他生成学习().判别学习()物体识别方法检测().不检测生成学习().判别学习(9生成学习.判别学习两种分类器学习模式生成学习 目标是学习到符合训练数据的类别模型 如算法()判别学习在训练阶段即考虑类别之间的判别信息包括(),,(),(),(),.判别学习算法比生成学习算法表现出更好的分类性能。生成学习.判别学习两种分类器学习模式10判别学习方法判别学习方法11人脸检测与识别人脸检测与识别12.物体检测
,.,.基于二分类器13.物体检测,.,.基于二分类器13物体检测
在复杂背景下,通过滑动窗口()搜索感兴趣的物体。14物体检测在复杂背景下,通过滑动窗口()搜索感兴趣的物体。物体检测.获取训练数据.提取特征.训练分类器.利用分类器进行检测物体检测.获取训练数据15人脸检测()人脸检测算法(基于)人脸检测()人脸检测算法(基于)16人脸检测算法()人脸检测算法()17滤波器设计滤波器设计18是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用分类器可以排除一些不必要的训练数据特徵,并将关键放在关键的训练数据上面。
是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器19
20
21
22
23
24
25学习目标:选择能够最有效地区分人脸与非人脸的矩形特征及其阈值学习目标:选择能够最有效地区分人脸与非人脸的矩形特征及其阈值26组合弱分类器(),得到更为精确的集成分类器()。弱分类器:性能仅比随机分类稍好根据矩形特征定义弱分类器:组合弱分类器(),得到更为精确的集成分类器()。27算法步骤初始给每个训练样本以同等权重循环执行以下步骤:根据当前加权训练集,选择最佳弱分类器提升被当前弱分类器错分的训练样本的权重按照各弱分类器分类精度对其加权,然后将各个弱分类器形成线性组合,得到最终分类器。算法步骤初始给每个训练样本以同等权重28算法中的每一次迭代如下:评价每一个样本上的每一种矩形特征为每一种矩形特征选择最佳分类阈值选择最优的矩形特征及其阈值组合改变样本权重计算复杂度:():特征数,:样本数,:阈值数算法中的每一次迭代如下:29第十二章目标识别课件30级联分类器()级联分类器()31训练级联分类器训练级联分类器32检测算法总体流程用正样本,反样本学习得到层(共使用个特征)级联分类获得实时性检测算法总体流程用正样本,反样本学习33人脸检测结果人脸检测结果34人脸检测结果人脸检测结果35人脸检测结果人脸检测结果36.人脸识别().,:.,.人脸识别().,:.,37::38图像像素的集合将由个像素构成的图像视为维空间中的点图像像素的集合将由个像素构成的图像视为维空间中的点39最近邻分类器最近邻分类器40使用主成分分析技术(,)减少维数使用主成分分析技术(,)减少维数41主成分分析(,变换)降低特征向量的维数获得最主要特征分量,减少相关性;避免维数灾难主成分分析(,变换)降低特征向量的维数42主成分分析(,变换)主成分分析(,变换)43主成分分析(,变换)主成分分析(,变换)44学习.计算训练图像的均值和协方差矩阵..计算协方差矩阵的特征值,取前个最大特征值对应的特征矢量..将图像投影到维特征空间()。识别.将测试图像投影到..在特征图像上执行分类.学习45:训练图像:训练图像46第十二章目标识别课件47方法的不足可能损失重要的细节信息方差最小的方向也可能是重要的没有考虑判别任务希望得到最具判别能力的特征但判别能力最佳并不等同于方差最大方法的不足可能损失重要的细节信息48:类特定的线性投影:类特定的线性投影49的线性判别函数的线性判别函数50的线性判别函数的线性判别函数51示例()示例()52基于的识别训练:根据训练图像,利用或方法确定投影矩阵将每个训练图像投影到子空间(或)。识别:将测试图像投影到或。子空间中距离测试图像最近的训练图像对应的类别为识别结果。基于的识别训练:53:人脸合成平均人脸平均就是美:人脸合成平均平均54:人脸合成:人脸合成55:人脸合成:人脸合成56:人脸合成:人脸合成57:人脸合成:人脸合成58:人脸合成,人脸合成软件:人脸合成,人脸合成软件59:人脸合成,人脸合成软件手动标定人脸:人脸合成,人脸合成软件手动标定人脸60:人脸合成,人脸合成软件手动标定人脸:人脸合成,人脸合成软件手动标定人脸61:人脸
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《固体废物处理与处置》大学笔记
- 2023高考英语语法填空热点话题分类训练:个人情况
- 济南2024年10版小学英语第5单元测验卷
- 2025新译林版英语七年级下Unit 8 Wonderland单词表
- 强社会救助体系建设的调研
- 消防突发状况的应急预案(3篇)
- 运输合同(水陆联运)(35篇)
- 试用期转正总结(33篇)
- 致客户慰问信
- 集团2024年工作计划6篇
- 全国计算机一级考试题库(附答案)
- 2024中国石油春季招聘(8000人)高频难、易错点500题模拟试题附带答案详解
- 2024中国交通建设集团限公司招聘200人高频难、易错点500题模拟试题附带答案详解
- 退化林修复投标方案(技术方案)
- 基层医疗机构中医馆建设工作计划
- 道路交通安全设施维护方案
- 2024-2030年全球及中国铝合金汽车轮毂行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 《中国心力衰竭诊断和治疗指南2024》解读
- 采购合同增补协议范本2024年
- 3.15 秦汉时期的科技与文化 课件 2024-2025学年七年级历史上学期
- 小学校长家校共育交流分享发言稿
评论
0/150
提交评论