版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考向10指数与指数函数1.(2020·全国高考真题(文))设,则()A. B. C. D.【答案】B【分析】根据已知等式,利用指数对数运算性质即可得解【详解】由可得,所以,所以有,故选:B.【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.2.(2015·山东高考真题(理))已知函数的定义域和值域都是,则_____________.【答案】【详解】若,则在上为增函数,所以,此方程组无解;若,则在上为减函数,所以,解得,所以.考点:指数函数的性质.1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.4.有关指数函数图象问题的解题思路(1)已知函数解析式判断其图象,一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除.(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.(3)有关指数方程、不等式问题的求解,往往是利用相应的指数型函数图象,数形结合求解.(4)根据指数函数图象判断底数大小的问题,可以通过直线x=1与图象的交点进行判断.5.利用指数函数的性质比较幂值的大小,先看能否化成同底数,能化成同底数的先化成同底数幂,再利用函数单调性比较大小,不能化成同底数的,一般引入“1”等中间量比较大小;6.利用指数函数的性质解简单的指数方程或不等式,先利用幂的运算性质化为同底数幂,再利用函数单调性转化为一般不等式求解;7.解答指数函数性质的综合应用,首先判断指数型函数的性质,再利用其性质求解。1.根式(1)概念:式子eq\r(n,a)叫做根式,其中n叫做根指数,a叫做被开方数.(2)性质:(eq\r(n,a))n=a(a使eq\r(n,a)有意义);当n为奇数时,eq\r(n,an)=a,当n为偶数时,eq\r(n,an)=|a|=eq\b\lc\{(\a\vs4\al\co1(a,a≥0,,-a,a<0.))2.分数指数幂(1)规定:正数的正分数指数幂的意义是aeq\f(m,n)=eq\r(n,am)(a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是a-eq\f(m,n)=eq\f(1,\r(n,am))(a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:aras=ar+s;(ar)s=ars;(ab)r=arbr,其中a>0,b>0,r,s∈Q.3.指数函数及其性质(1)概念:函数y=ax(a>0且a≠1)叫做指数函数,其中指数x是自变量,函数的定义域是R,a是底数.(2)指数函数的图象与性质a>10<a<1图象定义域R值域(0,+∞)性质过定点(0,1),即x=0时,y=1当x>0时,y>1;当x<0时,0<y<1当x<0时,y>1;当x>0时,0<y<1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数【知识拓展】1.画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),eq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(1,a))).2.在第一象限内,指数函数y=ax(a>0且a≠1)的图象越高,底数越大.3.有关指数型函数的性质(1)求复合函数的定义域与值域形如的函数的定义域就是的定义域.求形如的函数的值域,应先求出的值域,再由单调性求出的值域.若a的范围不确定,则需对a进行讨论.求形如的函数的值域,要先求出的值域,再结合的性质确定出的值域.(2)判断复合函数的单调性令u=f(x),x∈[m,n],如果复合的两个函数与的单调性相同,那么复合后的函数在[m,n]上是增函数;如果两者的单调性相异(即一增一减),那么复合函数在[m,n]上是减函数.(3)研究函数的奇偶性一是定义法,即首先是定义域关于原点对称,然后分析式子与f(−x)的关系,最后确定函数的奇偶性.二是图象法,作出函数的图象或从已知函数图象观察,若图象关于坐标原点或y轴对称,则函数具有奇偶性.1.(2021·全国高三其他模拟)毛衣柜里的樟脑丸会随着时间挥发而体积缩小,刚放进的新丸体积为,经过天后体积与天数的关系式为.若新丸经过50天后,体积变为,则一个新丸体积变为需经过的时间为()A.125天 B.100天 C.75天 D.50天2.(2021·玉林市育才中学高三三模(文))函数的图像恒过定点A,若点A在双曲线上,则m-n的最大值为()A.6 B.-2 C.1 D.43.(2021·全国高三其他模拟(文))___________.4.(2021·上海市青浦高级中学高三其他模拟)已知常数,函数的图象经过点、,若,则___1.(2021·湖南长沙市·雅礼中学高三其他模拟)已知,下列不等式成立的是()A. B. C. D.2.(2021·浙江高三其他模拟)不等式“”成立是不等式成立“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.(2019·吉林高三其他模拟(文))设a=21.2,b=30.3,c=40.5,则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.b<c<a4.(2021·山东济南市·高三其他模拟)为了广大人民群众的食品健康,国家倡导农户种植绿色蔬菜.绿色蔬菜生产单位按照特定的技术标准进行生产,并要经过专门机构认定,获得许可使用绿色蔬菜商标标志资格.农药的安全残留量是其很重要的一项指标,安全残留量是指某蔬菜使用农药后的残留量达到可以免洗入口且对人体无害的残留量标准.为了防止一种变异的蚜虫,某农科院研发了一种新的农药“蚜清三号”,经过大量试验,发现该农药的安全残留量为0.001mg/kg,且该农药喷洒后会逐渐自动降解,其残留按照y=ae﹣x的函数关系降解,其中x的单位为小时,y的单位为mg/kg.该农药的喷洒浓度为2mg/kg,则该农药喷洒后的残留量要达到安全残留量标准,至少需要()小时.(参考数据ln10≈2.3)A.5 B.6 C.7 D.85.(2021·湖南株洲市·高三二模)若函数的大致图象如图所示,则()A. B.C. D.6.(2021·江苏南通市·高三二模)已知函数满足,当时,,则不等式的解集为()A. B. C. D.7.(2021·全国高三其他模拟(理))函数的部分图象大致为()A. B.C. D.8.(2021·湖南高三其他模拟)(多选题)若,则()A. B. C. D.9.(2021·福建师大附中高三其他模拟)若(,为有理数),则______.10.(2021·广东汕头市·高三三模)函数(且)的图象恒过定点A,若点A在直线上,其中,,则mn的最大值为___________.11.(2021·浙江杭州市·学军中学高三其他模拟)已知函数,若对任意的,不等式恒成立,则实数a的取值范围是_________.12.(2021·湖南高三其他模拟)已知函数且)的图像过点.(1)求函数的解析式;(2)若函数在区间上的最大值是最小值的4倍,求实数的值.1.(2012·四川高考真题(理))函数的图像可能是().A. B.C. D.2.(2016·全国高考真题(理))已知,,,则A. B.C. D.3.(2014·江西高考真题(文))已知函数f(x)=(a∈R),若,则a=()A. B. C.1 D.24.(2013·全国高考真题(文))若存在正数x使2x(x-a)<1成立,则a的取值范围是A.(-∞,+∞) B.(-2,+∞) C.(0,+∞) D.(-1,+∞)5.(2011·山东高考真题(理))若点在函数的图象上,则的值为A.0 B. C.1 D.6.(2015·江苏高考真题)不等式的解集为________.7.(2015·福建高考真题(文))若函数满足,且在单调递增,则实数的最小值等于_______.8.(2009·江苏高考真题)已知,函数,若实数、满足,则、的大小关系为____.9.(2008·湖北高考真题(理))已知函数,等差数列的公差为,若,则___________.10.(2008·上海高考真题(理))已知函数.(1)若f(x)=2,求x的值;(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.1.【答案】C【分析】根据题意将当时代入计算出,然后再代入计算即可求出结果.【详解】解析:由题意知,当时,有.即,得.所以当时,有.即,得.所以.故选:C2.【答案】D【分析】令,求得,由点A在双曲线上,得到,然后由“1”的代换,利用基本不等式求解.【详解】令,解得,所以,因为点A在双曲线上,所以,所以,当且仅当,即时,等号成立,所以m-n的最大值为4故选:D3.【答案】【分析】利用指数幂和对数的运算直接求出.【详解】.故答案为:.4.【答案】;【分析】首先将点代入函数,并且变形为,,两式相乘并结合已知条件即可求解.【详解】由条件可知,得①,得②①②得,,又,得.故答案为:1.【答案】C【分析】根据指数函数、幂函数的单调性、不等式的性质,结合题意,可判断A、B、D的正误;根据对数函数的运算性质,可判断C的正误,即可得答案.【详解】对于:构造函数,由于,则函数在上为减函数,又因为,则有,所以错误;对于:构造函数,由于,则函数在上为增函数,又因为,则,所以B错误;对于C:,因为,所以,所以,所以,所以正确;对于D:,由于,所以,所以,所以错误;故选:C2.【答案】B【分析】利用充分条件和必要条件的定义求解即可【详解】因为不等式的解为,所以“”成立是不等式成立“”的必要不充分条件,故选:B3.【答案】D【分析】利用指数函数单调性,找到中间量求解即可.【详解】∵a=21.2>21=2,∴a>2,∵30<b=30.3<30.5,∴1<b<,∵c=40.5=2,∴a>c>b,故选:D.4.【答案】D【分析】先由可得a的值,再根据指数和对数的运算法则,解不等式2≤0.001,即可.【详解】解:由题意知,当x=0时,y=2,所以2=a•e﹣0,解得a=2,所以y=2e﹣x,要使该农药喷洒后的残留量要达到安全残留量标准,则2e﹣x≤0.001,解得x≥﹣ln=3ln10+ln2≈3×2.3+ln2=6.9+ln2,因为ln<ln2<lne,即0.5<ln2<1,所以6.9+ln2∈(7.4,7.9),所以要使该农药喷洒后的残留量要达到安全残留量标准,至少需要8小时.故选:D.5.【答案】B【分析】令得到,再根据函数图象与x轴的交点和函数的单调性判断.【详解】令得,即,解得,由图象知,当时,,当时,,故排除AD,当时,易知是减函数,当时,,,故排除C故选:B6.【答案】B【分析】根据已知条件判定f(x)为偶函数,结合其单调性和特殊值,得到f(x)<13的解集,利用平移变换思想得到f(x-2)<13的解集.【详解】依题意知为偶函数,其图象关于轴对称,当时,单调递增,且,所以的解集为.将的图象沿轴向右平移个单位长度后可得的图象,所以不等式的解集为.故选:B.【点睛】本题考查应用函数的奇偶性与单调性解函数不等式问题,涉及指数函数的单调性,属基础题,为了求解关于f(x-a)的不等式常常可以先求相应的关于f(x)的不等式,然后利用平移变换的方法得到所求不等式的解集.7.【答案】C【分析】先利用定义判断函数的奇偶性,排除B选项;然后判断时,,排除A,D选项.【详解】,故为奇函数,所以函数图象关于原点中心对称,排除B选项;当时,,,所以,且,故,排除A,D选项.故选:C.8.【答案】AD【分析】A.根据已知条件先分析函数的单调性,然后比较出的大小;B.取,进行判断即可;C.取,进行判断即可;D.根据指数函数的单调性以及的大小关系进行判断.【详解】A.设,因为可化为,则,根据指数函数的性质,可得单调递增,单调递减,因此在上单调递增,所以,故正确;B.由A项得,当,时,,,此时,故错误;C.由A项得,当,时,,故错误;D.因为在上是减函数,由,可得,即,故正确;故选:AD.9.【答案】【分析】根据幂的运算法则计算可得;【详解】解:因为(,为有理数)所以故答案为:10.【答案】【分析】根据指数函数的图像性质求出A点坐标,代入直线方程,利用均值不等式即可求解.【详解】解:函数(且)的图象恒过定点A,,点A在直线上,,又,,,,当且仅当,即时等号成立,所以mn的最大值为,故答案为:.11.【答案】(0,1)(2,)【分析】恒成立等价于恒成立,构造函数,然后利用导数求函数的最大值即可.【详解】∵,∴∵因此,即∴,即∵∴,即令,∴当时,,即在上单调递减∴解得故当时,,则即当时,在恒成立综上:(0,1)(2,)故答案为:(0,1)(2,)【点睛】恒成立问题解题思路:(1)参变量分离:(2)构造函数:①构造函数,研究函数的单调性,求出函数的最值,解不等式即可;②构造函数后,研究函数单调性,利用单调性解不等式,转化之后参数分离即可解决问题.12.【答案】(1)(2)【分析】(1)代入点,即可求出a得到函数解析式;(2)根据指数函数的单调性求出函数的最值,利用最大值是最小值的4倍求m.【详解】(1)因为函数且)的图像过点,所以,解得,所以(2)由(1)知,所以函数为递减函数.故函数在区间上的最大值,最小值分别为,,所以,即,解得.1.【答案】D【详解】试题分析:∵,∴,∴函数需向下平移个单位,不过(0,1)点,所以排除A,当时,∴,所以排除B,当时,∴,所以排除C,故选D.考点:函数图象的平移.2.【答案】A【详解】因为,,,因为幂函数在R上单调递增,所以,因为指数函数在R上单调递增,所以,即b<a<c.故选:A.3.【答案】A【分析】先求出的值,再求的值,然后列方程可求得答案【详解】解:由题意得,所以,解得a=.故选:A【点睛】此题考查分段函数求值问题,属于基础题4.【答案】D【详解】由题意知,存在正数,使,所以,而函数在上是增函数,所以,所以,故选D.【考点定位】本小题主要考查不等式、分离参变量、函数的单调性等知识,考查转化与化归等数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年样板房销售合同范本编制与执行指导3篇
- 2025年度餐饮管理公司厨师团队承包与餐饮连锁经营合同3篇
- 二零二五年智能化楼宇环境与职业健康安全维护协议3篇
- 二零二五年红酒线上线下联动营销合作协议范本3篇
- 2025年度文化创意产业项目投资担保协议4篇
- 2025年新型压路机买卖及技术支持合同3篇
- 2025年度服装销售居间服务合同范本模板2篇
- 二零二五年度数字经济毛坯店面租赁协议书4篇
- 二零二五年度铝合金照明灯具设计与生产合同8篇
- 2025年度广告公司临时聘用人员劳动合同4篇
- 数字化年终述职报告
- 《阻燃材料与技术》课件 第5讲 阻燃塑料材料
- 2025年蛇年年度营销日历营销建议【2025营销日历】
- 2024年职工普法教育宣讲培训课件
- 安保服务评分标准
- T-SDLPA 0001-2024 研究型病房建设和配置标准
- (人教PEP2024版)英语一年级上册Unit 1 教学课件(新教材)
- 全国职业院校技能大赛高职组(市政管线(道)数字化施工赛项)考试题库(含答案)
- 2024胃肠间质瘤(GIST)诊疗指南更新解读 2
- 光储电站储能系统调试方案
- 2024年二级建造师继续教育题库及答案(500题)
评论
0/150
提交评论