河北省保定市涿州靖雅中学高三数学文月考试题含解析_第1页
河北省保定市涿州靖雅中学高三数学文月考试题含解析_第2页
河北省保定市涿州靖雅中学高三数学文月考试题含解析_第3页
河北省保定市涿州靖雅中学高三数学文月考试题含解析_第4页
河北省保定市涿州靖雅中学高三数学文月考试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市涿州靖雅中学高三数学文月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.春天来了,某池塘中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,则当荷叶刚好覆盖水面面积一半时,荷叶已生长了(

)A.10天 B.15天 C.19天 D.2天参考答案:C【分析】由题意设荷叶覆盖水面的初始面积,再列出解析式,并注明x的范围,列出方程求解即可.【详解】设荷叶覆盖水面的初始面积为a,则x天后荷叶覆盖水面的面积,根据题意,令,解得,故选:C.【点睛】本题考查指数函数模型的应用,考查学生建模能力、数学运算能力,是一道容易题.2.已知是三角形的内角,则“”是“”的

(

)A.充分不必要条件

B.必要不充分条件C.充要条件 D.既不充分也不必要条件参考答案:A略3.已知是公差不为0的等差数列的前项和,且成等比数列,则

(A)2

(B)6

(C)8

(D)10参考答案:C4.执行下图的程序框图,若输入的分别为1,2,3,则输出的=.

.

.

.参考答案:D输入;时:;时:;时:;时:输出.

选D.5.已知向量,若,则的最小值为(

)A.

B.12

C.6

D.参考答案:C6.已知函数,其图象与直线y=﹣2相邻两个交点的距离为π.若f(x)>1对于任意的恒成立,则φ的取值范围是()A. B. C. D.参考答案:B【考点】正弦函数的图象.【分析】根据条件先求出函数的周期,计算出ω的值,根据不等式恒成立,结合三角函数的解法求出不等式的解即可得到结论.【解答】解:∵函数,其图象与直线y=﹣2相邻两个交点的距离为π.∴函数的周期T=π,即=π,即ω=2,则f(x)=2sin(2x+φ),若f(x)>1则2sin(2x+φ)>1,则sin(2x+φ)>,若f(x)>1对于任意的恒成立,故有﹣+φ≥2kπ++,且+φ≤2kπ+,求得φ≥2kπ+,且φ≤2kπ+,k∈Z,故φ的取值范围是[2kπ+,2kπ+],k∈Z,∵|φ|≤,∴当k=0时,φ的取值范围是[,],故选:B.7.若关于x的不等式的解集包含区间(0,1),则a的取值范围为(

)A.

B.(-∞,1]

C.

D.(-∞,1)参考答案:B由题得在(0,1)上恒成立,设,所以,由于函数是增函数,所以,故选B.

8.已知三点A(2,1),B(1,2),C(,),动点P(a,b)满足0≤≤2,且0≤≤2,则点P到点C的距离大于的概率为

(A)(B)1

(C)

(D)1参考答案:A略9.已知集合,则A∩B=(

)A.(-∞,-4)

B.(-∞,-2)

C.(-4,2)

D.(-2,2)参考答案:C∵集合A={x|22﹣x>1}={x|x<2},B={x||x+1|<3}={x|﹣4<x<2},∴A∩B={x|﹣4<x<2}=(﹣4,2).故选:C.

10.若实数x,y满足条件则z=﹣的最大值为()A.﹣ B.﹣ C.﹣ D.﹣1参考答案:C【考点】简单线性规划.【分析】约束条件作出可行域,化目标函数为直线方程的斜截式,由图看出直线4x+3y=0平行的直线过可行域内A点时z有最大值,把C点坐标代入目标函数得答案.【解答】解:由约束条件作可行域如图,由z=﹣的最大值可知,4x+3y取得最大值时,z取得最大值,与4x+3y=0,平行的准线经过A时,即:可得A(1,2),4x+3y取得最大值,故z最大,即:zmax==.故选:C.二、填空题:本大题共7小题,每小题4分,共28分11.已知则常数=_________.参考答案:1,解得。12.已知某算法的流程图如图所示,则程序运行结束时输出的结果为

.参考答案:3第一次循环有;第二次循环有;第三次循环有;此时满足条件,输出。13.在极坐标系中,两点,间的距离是

.参考答案:略14.求值:___________.参考答案:略15.(理)若函数的值域为,则实数的取值范围为

. 参考答案:

16.

近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重。大气污染可引起心悸、呼吸困难等心肺疾病。为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如下的列联表:

患心肺疾病不患心肺疾病合计男

5

女10

合计

50 已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为。 (1)请将上面的列联表补充完整; (2)问能否在犯错误的概率不超过0.005的前提下认为患心肺疾病与性别有关?说明你的理由; (3)已知在不患心肺疾病的5位男性中,有3位又患胃病。现在从不患心肺疾病的5位男性中,任意选出3位进行其他方面的排查,求恰好有一位患胃病的概率。 下面的临界值表供参考: 参考公式。其中参考答案:略17.已知,且,则

参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知等比数列{an}的首项为a,公比为q,其前n项和为Sn用a和q表示Sn,并证明你的结论.参考答案:解:当时,,∴…当时,……∴…,∴∴()综上,或时用数学归纳法证明:①当时,,成立②假设当时结论成立,即则当时,,即结论成立由①,②知结论对所有都成立.即19.设.(1)在[1,2]上单调,求a的取值范围;(2)已知在处取得极小值,求a的取值范围.参考答案:解:(1)由,即,,,①在上单调递增,∴对恒成立,即对恒成立,得;②在上单调递减,∴对恒成立,即对恒成立,得,由①②可得的取值范围为;(2)由(1)知,①,在上单调递增,∴时,,单调递减,时,,单调递增,∴在处取得极小值,符合题意;②时,,又在上单调递增,∴时,,∴时,,∴在上单调递减,上单调递增,在处取得极小值,符合题意;③时,,在上单调递增,∴上单调递减,∴时,,单调递减,不合题意;④时,,当时,,单调递增,当时,,单调递减,∴在处取得极大值,不符合题意;综上所述,可得.

20.如图所示,在三棱锥P-ABC中,,,.为AC的中点P.(1)求证:;(2)求点A到平面PBC的距离.参考答案:(1)见证明(2)【分析】(1)由已知可得,又,由线面垂直的判定定理得到面,进而得到结合,又可证得面,再由线面垂直的性质得到AB⊥PA;(2)利用,可得,再利用已知数据求解即可.【详解】(1)在等边中,为中点∴∵,且∴面∵平面∴∵,∴面∴.(2)在中,,∴,同理故在中,边上的高设点到平面的距离为,.∴∴即点到平面的距离为.【点睛】本题考查线面垂直的判定和性质,考查空间想象能力和思维能力,考查了等体积转化的解题技巧,是中档题.21.已知曲线C的极坐标方程是ρ=4cosθ.以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是(t为参数).(1)将曲线C的极坐标方程化为直角坐标方程;(2)若直线l与曲线C相交于A、B两点,且,求直线的倾斜角α的值.参考答案:【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)由曲线C的极坐标方程,得ρ2=4ρcosθ.由x2+y2=ρ2,x=ρcosθ,y=ρsinθ,能求出曲线C的直角坐标方程.(2)将直线l的参数方程代入圆的方程,得:t2﹣2tcosα﹣3=0.利用韦达定理和弦长公式能求出直线的倾斜角α的值.【解答】选修4﹣4:坐标系与参数方程(本小题满分,第(1)问,第(2)问5分)解:(1)由曲线C的极坐标方程是ρ=4cosθ,得ρ2=4ρcosθ.∵x2+y2=ρ2,x=ρcosθ,y=ρsinθ,∴曲线C的直角坐标方程为x2+y2﹣4x=0,即(x﹣2)2+y2=4.(2)将直线l的参数方程(t为参数)代入圆的方程,得:(tcosα﹣1)2+(tsinα)2=4,化简

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论