上海黎鸣高级中学高三数学理知识点试题含解析_第1页
上海黎鸣高级中学高三数学理知识点试题含解析_第2页
上海黎鸣高级中学高三数学理知识点试题含解析_第3页
上海黎鸣高级中学高三数学理知识点试题含解析_第4页
上海黎鸣高级中学高三数学理知识点试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海黎鸣高级中学高三数学理知识点试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.一平面截一球得到直径为cm的圆面,球心到这个平面的距离是2cm,则该球的体积是(

)A.12cm3

B.cm3

C.cm3

D.cm3参考答案:B2.已知双曲线的两条渐近线的夹角为90°,则双曲线的离心率为A、B、C、D、参考答案:C由已知可知双曲线是等轴双曲线,于是,故.3.已知f(x)=(a<0),定义域为D,任意m,n∈D,点P(m,f(n))组成的图形为正方形,则实数a的值为()A.﹣1 B.﹣2 C.﹣3 D.﹣4参考答案:D【考点】函数的定义域及其求法.【分析】求出函数的定义域,根据任意m,n∈D,点P(m,f(n))组成的图形为正方形,得到函数的最大值为2,解方程即可得到结论.【解答】解:要使函数有意义,则a(x﹣1)(x﹣3)≥0,∵a<0,∴不等式等价为(x﹣1)(x﹣3)≤0,即1≤x≤3,∴定义域D=[1,3],∵任意m,n∈D,点P(m,f(n))组成的图形为正方形,∴正方形的边长为2,∵f(1)=f(3)=0,∴函数的最大值为2,即a(x﹣1)(x﹣3)的最大值为4,设f(x)=a(x﹣1)(x﹣3)=ax2﹣4ax+3a,∴当x=2时,f(2)=﹣a=4,即a=﹣4,故选:D.4.已知全集,集合则集合中的元素的个数为

(

)A.1

B.1

C.3

D.4参考答案:【知识点】集合的运算

A1B因为集合,所以,求得,所以,故选择B.【思路点拨】先求得集合,可得,根据补集定义求的其补集.5.设等比数列{an}的前n项和为Sn.若S2=3,S4=15,则S6=()A.31

B.32

C.63

D.64参考答案:C

【知识点】等比数列

D3解析:设等比数列{an}的首项为a,公比为q,易知q≠1,根据题意可得解得q2=4,=-1,所以S6==(-1)(1-43)=63.【思路点拨】由已知条件可求出公比,再利用求和公式直接求出数值.6.记Sn为等差数列{an}的前n项和.已知,则A. B. C. D.参考答案:A依题意有,可得,,.

7.已知关于的方程的三个实根分别为一个椭圆,一个抛物线,一个双曲线的离心率,则的取值范围(

)A.

B.

C.

D.参考答案:B8.已知平行四边形ABCD中,AC为一条对角线,若A. B. C.6 D.8参考答案:D略9.函数(0≤x≤9)的最大值与最小值的和为(

).A.

B.0

C.-1

D.参考答案:A10.若函数在上单调递增,则实数的取值范围是A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.如图,现有一个为圆心角、湖岸与为半径的扇形湖面.现欲在弧上取不同于的点,用渔网沿着弧(弧在扇形的弧上)、半径和线段(其中),在扇形湖面内各处连个养殖区域——养殖区域I和养殖区域II.若,,.求所需渔网长度(即图中弧、半径和线段长度之和)的最大值为

.参考答案:12.如图是一个算法的流程图,则输出S的值是.参考答案:7500略13.已知椭圆C:的右焦点为F,点A(一2,2)为椭圆C内一点。若椭圆C上存在一点P,使得|PA|+|PF|=8,则m的最大值是___.参考答案:25【分析】设椭圆的左焦点为F'(﹣2,0),由椭圆的定义可得2=|PF|+|PF'|,即|PF'|=2﹣|PF|,可得|PA|﹣|PF'|=8﹣2,运用三点共线取得最值,解不等式可得m的范围,再由点在椭圆内部,可得所求范围.【详解】椭圆C:的右焦点F(2,0),左焦点为F'(﹣2,0),由椭圆的定义可得2=|PF|+|PF'|,即|PF'|=2﹣|PF|,可得|PA|﹣|PF'|=8﹣2,由||PA|﹣|PF'||≤|AF'|=2,可得﹣2≤8﹣2≤2,解得,所以,①又A在椭圆内,所以,所以8m-16<m(m-4),解得或,与①取交集得故答案为25.【点睛】本题考查椭圆的定义和性质的运用,考查转化思想和运算能力,属于中档题.14.设x,y∈R,若不等式组所表示的平面区域是一个锐角三角形,则的取值范围是

______

.参考答案:15.以下四个命题:①设,则是的充要条件;②已知命题p、q、r满足“p或q”真,“或r”也真,则“q或r”假;③若,则使得恒成立的x的取值范围为{或};④将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为.其中真命题的序号为________.参考答案:①③④【分析】①中,根据对数函数的运算性质,即可判定;②中,根据复合命题的真假判定方法,即可判定;③中,令,转化为在恒成立,即可求解;④中,根据几何体的结构特征和椎体的体积公式,即可求解.【详解】由题意,①中,当,根据对数函数的运算性质,可得,反证,当时,可得,所以“”是“”成立的充要条件,所以是正确的;②中,若命题““或”真”,可得命题中至少有一个是真命题,当为真命题,则假命题,此时若“或”真,则命题为真命题,所以“或”真命题,所以不正确;③中,令,则不等式恒成立转化为在恒成立,则满足,即,解得或,所以是正确的;④中,如图所示,O为AC的中点,连接DO,BO,则都是等腰直角三角形,,其中也是等腰直角三角形,平面,为三棱锥的高,且,所以三棱锥体积为,所以是正确的,综上可知真命题的序号为①③④【点睛】本题主要考查了命题的真假判定问题,其中解答中涉及到充要条件的判定、复合命题的应用,不等式的恒成立问题的求解,以及折叠问题求几何体的体积等知识点的综合考查,着重考查了分析问题和解答问题的能力,属于中档试题.16.按如下程序框图运行,则输出结果为______.

参考答案:170略17.若实数满足,则的最小值为________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,记圆心P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设Q为曲线C上的一个不在x轴上的动点,O为坐标原点,过点F2作OQ的平行线交曲线C于M,N两个不同的点,求△QMN面积的最大值.参考答案:【考点】轨迹方程.【分析】(I)由已知条件推导出|PF1|+|PF2|=8>|F1F2|=6,从而得到圆心P的轨迹为以F1,F2为焦点的椭圆,由此能求出圆心P的轨迹C的方程.(II)由MN∥OQ,知△QMN的面积=△OMN的面积,由此能求出△QMN的面积的最大值.【解答】解:(Ⅰ)设圆P的半径为R,圆心P的坐标为(x,y),由于动圆P与圆F1:(x+2)2+y2=49相切,且与圆F2:(x﹣2)2+y2=1相内切,所以动圆P与圆F1只能内切.…所以|PF1|+|PF2|=7﹣R+R﹣1=6>|F1F2|=4.…所以圆心圆心P的轨迹为以F1,F2为焦点的椭圆,其中2a=6,2c=4,∴a=3,c=2,b2=a2﹣c2=5.所以曲线C的方程为=1.…(Ⅱ)设M(x1,y1),N(x2,y2),Q(x3,y3),直线MN的方程为x=my+2,由可得:(5m2+9)y2+20my﹣25=0,则y1+y2=﹣,y1y2=﹣.…

所以|MN|==

因为MN∥OQ,∴△QMN的面积=△OMN的面积,∵O到直线MN:x=my+2的距离d=.…所以△QMN的面积.…令=t,则m2=t2﹣1(t≥0),S==.设,则.因为t≥1,所以.所以,在[1,+∞)上单调递增.所以当t=1时,f(t)取得最小值,其值为9.…所以△QMN的面积的最大值为.…19.为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:甲公司员工A:410,390,330,360,320,400,330,340,370,350乙公司员工B:360,420,370,360,420,340,440,370,360,420每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件0.65元,乙公司规定每天350件以内(含350件)的部分每件0.6元,超出350件的部分每件0.9元.(1)根据题中数据写出甲公司员工A在这10天投递的快件个数的平均数和众数;(2)为了解乙公司员工B每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为(单位:元),求的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.参考答案:(1)平均数为360,众数为330;(2)见详解;(3)甲公司:7020(元),乙公司:7281(元)【分析】(1)将图中甲公司员工A的所有数据相加,再除以总的天数10,即可求出甲公司员工A投递快递件数的平均数.从中发现330出现的次数最多,故为众数;(2)由题意能求出的可能取值为340,360,370,420,440,分别求出相对应的概率,由此能求出的分布列和数学期望;(3)利用(1)(2)的结果,可估算两公司的每位员工在该月所得的劳务费.【详解】解:(1)由题意知甲公司员工在这10天投递的快递件数的平均数为.众数为330.(2)设乙公司员工1天的投递件数为随机变量,则当时,当时,当时,当时,当时,的分布列为204219228273291

(元);(3)由(1)估计甲公司被抽取员工在该月所得的劳务费为(元)由(2)估计乙公司被抽取员工在该月所得的劳务费为(元).【点睛】本题考查频率分布表的应用,考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题.20.(1)求证:对于任意实数x,y,z都有.(2)是否存在实数,使得对于任意实数x,y,z下式恒成立?试证明你的结论.参考答案:(1)由均值不等式,,,.故.(2)上式恒成立当且仅当且.化简得且.显然,满足要求.21.已知函数与函数在点处有公共的切线,设.(I)求的值(Ⅱ)求在区间上的最小值.参考答案:解:(I)因为所以在函数的图象上又,所以所以

………………3分(Ⅱ)因为,其定义域为

………………5分当时,,所以在上单调递增所以在上最小值为

………………7分当时,令,得到(舍)当时,即时,对恒成立,所以在上单调递增,其最小值为………………9分当时,即时,对成立,所以在上单调递减,其最小值为

………………11分

当,即时,对成立,对成立

所以在单调递减,在上单调递增

其最小值为………13分综上,当时,

在上的最小值为

当时,在

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论