版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省安陆市重点名校2024年中考数学最后冲刺模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.的算术平方根是()A.9 B.±9 C.±3 D.32.若kb<0,则一次函数的图象一定经过()A.第一、二象限 B.第二、三象限 C.第三、四象限 D.第一、四象限3.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()A.20° B.30° C.40° D.50°4.如图,已知正五边形内接于,连结,则的度数是()A. B. C. D.5.下列运算正确的是()A.3a2﹣2a2=1 B.a2•a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b26.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm7.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=kx(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y28.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣ B. C.﹣5 D.59.如图,点A、B在数轴上表示的数的绝对值相等,且,那么点A表示的数是A. B. C. D.310.的绝对值是()A.8 B.﹣8 C. D.﹣11.计算2a2+3a2的结果是()A.5a4 B.6a2 C.6a4 D.5a212.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是___岁.14.已知⊙O的半径为5,由直径AB的端点B作⊙O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为______,此函数的最大值是____,最小值是______.15.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.16.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.17.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.18.如图,点P的坐标为(2,2),点A,B分别在x轴,y轴的正半轴上运动,且∠APB=90°.下列结论:①PA=PB;②当OA=OB时四边形OAPB是正方形;③四边形OAPB的面积和周长都是定值;④连接OP,AB,则AB>OP.其中正确的结论是_____.(把你认为正确结论的序号都填上)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知△ABC中,D为AB边上任意一点,DF∥AC交BC于F,AE∥BC,∠CDE=∠ABC=∠ACB=α,(1)如图1所示,当α=60°时,求证:△DCE是等边三角形;(2)如图2所示,当α=45°时,求证:=;(3)如图3所示,当α为任意锐角时,请直接写出线段CE与DE的数量关系:=_____.20.(6分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.(1)求二次函数的解析式;(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.21.(6分)如图,一次函数y=-x+5的图象与反比例函数y=(k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y=(k≠0)的值时,写出自变量x的取值范围.22.(8分)M中学为创建园林学校,购买了若干桂花树苗,计划把迎宾大道的一侧全部栽上桂花树(两端必须各栽一棵),并且每两棵树的间隔相等,如果每隔5米栽1棵,则树苗缺11棵;如果每隔6米栽1棵,则树苗正好用完,求购买了桂花树苗多少棵?23.(8分)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲,乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可贏利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)24.(10分)对几何命题进行逆向思考是几何研究中的重要策略,我们知道,等腰三角形两腰上的高线相等,那么等腰三角形两腰上的中线,两底角的角平分线也分别相等吗?它们的逆命题会正确吗?(1)请判断下列命题的真假,并在相应命题后面的括号内填上“真”或“假”.①等腰三角形两腰上的中线相等;②等腰三角形两底角的角平分线相等;③有两条角平分线相等的三角形是等腰三角形;(2)请写出“等腰三角形两腰上的中线相等”的逆命题,如果逆命题为真,请画出图形,写出已知、求证并进行证明,如果不是,请举出反例.25.(10分)第二十四届冬季奧林匹克运动会将于2022年2月4日至2月20日在北京举行,北京将成为历史上第一座既举办过夏奥会又举办过冬奥会的城市.某区举办了一次冬奥知识网上答题竞赛,甲、乙两校各有名学生参加活动,为了解这两所学校的成绩情况,进行了抽样调查,过程如下,请补充完整.[收集数据]从甲、乙两校各随机抽取名学生,在这次竞赛中他们的成绩如下:甲:乙:[整理、描述数据]按如下分数段整理、描述这两组样本数据:学校人数成绩甲乙(说明:优秀成绩为,良好成绩为合格成绩为.)[分析数据]两组样本数据的平均分、中位数、众数如下表所示:学校平均分中位数众数甲乙其中.[得出结论](1)小明同学说:“这次竞赛我得了分,在我们学校排名属中游略偏上!”由表中数据可知小明是_校的学生;(填“甲”或“乙”)(2)张老师从乙校随机抽取--名学生的竞赛成绩,试估计这名学生的竞赛成绩为优秀的概率为_;(3)根据以上数据推断一所你认为竞赛成绩较好的学校,并说明理由:;(至少从两个不同的角度说明推断的合理性)26.(12分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.27.(12分)已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.求证:AB=AF;若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
根据算术平方根的定义求解.【详解】∵=9,
又∵(±1)2=9,
∴9的平方根是±1,
∴9的算术平方根是1.
即的算术平方根是1.
故选:D.【点睛】考核知识点:算术平方根.理解定义是关键.2、D【解析】
根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【详解】∵kb<0,∴k、b异号。①当k>0时,b<0,此时一次函数y=kx+b的图象经过第一、三、四象限;②当k<0时,b>0,此时一次函数y=kx+b的图象经过第一、二、四象限;综上所述,当kb<0时,一次函数y=kx+b的图象一定经过第一、四象限。故选:D【点睛】此题考查一次函数图象与系数的关系,解题关键在于判断图象的位置关系3、C【解析】
由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.【详解】∵∠1=50°,∴∠3=∠1=50°,∴∠2=90°−50°=40°.故选C.【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键.4、C【解析】
根据多边形内角和定理、正五边形的性质求出∠ABC、CD=CB,根据等腰三角形的性质求出∠CBD,计算即可.【详解】∵五边形为正五边形∴∵∴∴故选:C.【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.5、D【解析】
根据合并同类项法则,可知3a2﹣2a2=a2,故不正确;根据同底数幂相乘,可知a2•a3=a5,故不正确;根据完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正确;根据完全平方公式,可知(a+b)2=a2+2ab+b2,正确.故选D.【详解】请在此输入详解!6、B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=AB=4cm,BN=BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm.故选B.点睛:解本题时,由于题目中告诉的是点C在直线AB上,因此根据题目中所告诉的AB和BC的大小关系要分点C在线段AB上和点C在线段AB的延长线上两种情况分析解答,不要忽略了其中任何一种.7、D【解析】试题分析:反比例函数y=-的图象位于二、四象限,在每一象限内,y随x的增大而增大,∵A(x1,y1)、B(x2,y2)、C(x3,y3)在该函数图象上,且x1<x2<0<x3,,∴y3<y1<y2;故选D.考点:反比例函数的性质.8、D【解析】【分析】先对括号内的进行通分,进行分式的加减法运算,然后再进行分式的乘除法运算,最后把a-b=5整体代入进行求解即可.【详解】(﹣2)•===a-b,当a-b=5时,原式=5,故选D.9、B【解析】
如果点A,B表示的数的绝对值相等,那么AB的中点即为坐标原点.【详解】解:如图,AB的中点即数轴的原点O.
根据数轴可以得到点A表示的数是.
故选:B.【点睛】此题考查了数轴有关内容,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点确定数轴的原点是解决本题的关键.10、C【解析】
根据绝对值的计算法则解答.如果用字母a表示有理数,则数a绝对值要由字母a本身的取值来确定:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.【详解】解:.故选【点睛】此题重点考查学生对绝对值的理解,熟练掌握绝对值的计算方法是解题的关键.11、D【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.【详解】2a2+3a2=5a2.故选D.【点睛】本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.12、C【解析】
根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.【详解】解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,∵其中一个交点的坐标为,则另一个交点的坐标为,故选C.【点睛】考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1.【解析】
根据中位数的定义找出第20和21个数的平均数,即可得出答案.【详解】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数.∵14岁的有1人,1岁的有21人,∴这个班同学年龄的中位数是1岁.【点睛】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.14、x2+x+20(0<x<10)不存在.【解析】
先连接BP,AB是直径,BP⊥BM,所以有,∠BMP=∠APB=90°,又∠PBM=∠BAP,那么有△PMB∽△PAB,于是PM:PB=PB:AB,可求从而有(0<x<10),再根据二次函数的性质,可求函数的最大值.【详解】如图所示,连接PB,∵∠PBM=∠BAP,∠BMP=∠APB=90°,∴△PMB∽△PAB,∴PM:PB=PB:AB,∴∴(0<x<10),∵∴AP+2PM有最大值,没有最小值,∴y最大值=故答案为(0<x<10),,不存在.【点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.15、【解析】
列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【详解】如图:共有12种情况,在第三象限的情况数有2种,
故不再第三象限的共10种,
不在第三象限的概率为,
故答案为.【点睛】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.16、1【解析】
解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.【点睛】本题考查正多边形和圆;扇形面积的计算.17、【解析】
过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.【详解】如图,过点B作BD⊥AC于D,设AH=BC=2x,∵AB=AC,AH⊥BC,∴BH=CH=BC=x,根据勾股定理得,AC==x,S△ABC=BC•AH=AC•BD,即•2x•2x=•x•BD,解得BC=x,所以,sin∠BAC=.故答案为.18、①②【解析】
过P作PM⊥y轴于M,PN⊥x轴于N,得出四边形PMON是正方形,推出OM=OM=ON=PN=1,证△APM≌△BPN,可对①进行判断,推出AM=BN,求出OA+OB=ON+OM=2,当当OA=OB时,OA=OB=1,然后可对②作出判断,由△APM≌△BPN可对四边形OAPB的面积作出判断,由OA+OB=2,然后依据AP和PB的长度变化情况可对四边形OAPB的周长作出判断,求得AB的最大值以及OP的长度可对④作出判断.【详解】过P作PM⊥y轴于M,PN⊥x轴于N
∵P(1,1),
∴PN=PM=1.
∵x轴⊥y轴,
∴∠MON=∠PNO=∠PMO=90°,
∴∠MPN=360°-90°-90°-90°=90°,则四边形MONP是正方形,
∴OM=ON=PN=PM=1,
∵∠MPA=∠APB=90°,
∴∠MPA=∠NPB.
∵∠MPA=∠NPB,PM=PN,∠PMA=∠PNB,
∴△MPA≌△NPB,
∴PA=PB,故①正确.
∵△MPA≌△NPB,
∴AM=BN,
∴OA+OB=OA+ON+BN=OA+ON+AM=ON+OM=1+1=2.
当OA=OB时,OA=OB=1,则点A、B分别与点M、N重合,此时四边形OAPB是正方形,故②正确.
∵△MPA≌△NPB,
∴四边形OAPB的面积=四边形AONP的面积+△PNB的面积=四边形AONP的面积+△PMA的面积=正方形PMON的面积=2.
∵OA+OB=2,PA=PB,且PA和PB的长度会不断的变化,故周长不是定值,故③错误.
,∵∠AOB+∠APB=180°,
∴点A、O、B、P共圆,且AB为直径,所以
AB≥OP,故④错误.
故答案为:①②.【点睛】本题考查了全等三角形的性质和判定,三角形的内角和定理,坐标与图形性质,正方形的性质的应用,关键是推出AM=BN和推出OA+OB=OM+ON三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、1【解析】试题分析:(1)证明△CFD≌△DAE即可解决问题.(2)如图2中,作FG⊥AC于G.只要证明△CFD∽△DAE,推出=,再证明CF=AD即可.(3)证明EC=ED即可解决问题.试题解析:(1)证明:如图1中,∵∠ABC=∠ACB=60°,∴△ABC是等边三角形,∴BC=BA.∵DF∥AC,∴∠BFD=∠BCA=60°,∠BDF=∠BAC=60°,∴△BDF是等边三角形,∴BF=BD,∴CF=AD,∠CFD=120°.∵AE∥BC,∴∠B+∠DAE=180°,∴∠DAE=∠CFD=120°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=60°,∴∠FCD=∠ADE,∴△CFD≌△DAE,∴DC=DE.∵∠CDE=60°,∴△CDE是等边三角形.(2)证明:如图2中,作FG⊥AC于G.∵∠B=∠ACB=45°,∴∠BAC=90°,∴△ABC是等腰直角三角形.∵DF∥AC,∴∠BDF=∠BAC=90°,∴∠BFD=45°,∠DFC=135°.∵AE∥BC,∴∠BAE+∠B=180°,∴∠DFC=∠DAE=135°.∵∠CDA=∠B+∠BCD=∠CDE+∠ADE.∵∠CDE=∠B=45°,∴∠FCD=∠ADE,∴△CFD∽△DAE,∴=.∵四边形ADFG是矩形,FC=FG,∴FG=AD,CF=AD,∴=.(3)解:如图3中,设AC与DE交于点O.∵AE∥BC,∴∠EAO=∠ACB.∵∠CDE=∠ACB,∴∠CDO=∠OAE.∵∠COD=∠EOA,∴△COD∽△EOA,∴=,∴=.∵∠COE=∠DOA,∴△COE∽△DOA,∴∠CEO=∠DAO.∵∠CED+∠CDE+∠DCE=180°,∠BAC+∠B+∠ACB=180°.∵∠CDE=∠B=∠ACB,∴∠EDC=∠ECD,∴EC=ED,∴=1.点睛:本题考查了相似三角形综合题、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考压轴题.20、(1);(2)P点坐标为,;(3)或或或.【解析】
(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.【详解】解:(1)∵A(-1,0),在上,,解得,∴二次函数的解析式为;(2)在中,令可得,解得或,,且,∴经过、两点的直线为,设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,,∴当时,四边形的面积最大,此时P点坐标为,∴四边形的最大面积为;(3),∴对称轴为,∴可设点坐标为,,,,,,为直角三角形,∴有、和三种情况,①当时,则有,即,解得或,此时点坐标为或;②当时,则有,即,解得,此时点坐标为;③当时,则有,即,解得,此时点坐标为;综上可知点的坐标为或或或.【点睛】本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.21、(1);(2)1<x<1.【解析】
(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
(2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=.联立,解得:或,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.22、购买了桂花树苗1棵【解析】分析:首先设购买了桂花树苗x棵,然后根据题意列出一元一次方程,从而得出答案.详解:设购买了桂花树苗x棵,根据题意,得:5(x+11-1)=6(x-1),解得x=1.答:购买了桂花树苗1棵.点睛:本题主要考查的是一元一次方程的应用,属于基础题型.解决这个问题的关键就是找出等量关系以及路的长度与树的棵树之间的关系.23、(1)甲、乙两组工作一天,商店各应付300元和140元;(2)单独请乙组需要的费用少;(3)甲乙合作施工更有利于商店.【解析】
(1)设甲组单独工作一天商店应付x元,乙组单独工作一天商店应付y元,根据总费用与时间的关系建立方程组求出其解即可;
(2)由甲乙单独完成需要的时间,再结合(1)求出甲、乙两组单独完成的费用进行比较就可以得出结论;
(3)先比较甲、乙单独装修的时间和费用谁对商店经营有利,再比较合作装修与甲单独装修对商店的有利经营情况,从而可以得出结论.【详解】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得:解得:答:甲、乙两组工作一天,商店各应付300元和140元(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200X24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少,答:甲乙合作施工更有利于商店.【点睛】考查列二元一次方程组解实际问题的运用,工作总量=工作效率×工作时间的运用,设计推理方案的运用,解答时建立方程组求出甲乙单独完成的工作时间是关键.24、(1)①真;②真;③真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;见解析.【解析】
(1)根据命题的真假判断即可;(2)根据全等三角形的判定和性质进行证明即可.【详解】(1)①等腰三角形两腰上的中线相等是真命题;②等腰三角形两底角的角平分线相等是真命题;③有两条角平分线相等的三角形是等腰三角形是真命题;故答案为真;真;真;(2)逆命题是:有两边上的中线相等的三角形是等腰三角形;已知:如图,△ABC中,BD,CE分别是AC,BC边上的中线,且BD=CE,求证:△ABC是等腰三角形;证明:连接DE,过点D作DF∥EC,交BC的延长线于点F,∵BD,CE分别是AC,BC边上的中线,∴DE是△ABC的中位线,∴DE∥BC,∵DF∥EC,∴四边形DECF是平行四边形,∴EC=DF,∵BD=CE,∴DF=BD,∴∠DBF=∠DFB,∵DF∥EC,∴∠F=∠ECB,∴∠ECB=∠DBC,在△DBC与△ECB中,∴△DBC≌△ECB,∴EB=DC,∴AB=A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 课程设计科学有
- 二零二五年度小型餐馆污水处理合同2篇
- 脱壳机课程设计
- 2025年度暖气片节能产品认证合同样本3篇
- 2025年度特许经营合同标的及许可条件详细说明3篇
- 技术部门安全职责(2篇)
- 2025年生产企业安全库存管理制度(三篇)
- 2025年度特色农产品线上线下融合营销合作协议2篇
- 二零二五年度房地产记账代理与评估合同3篇
- 二零二五年度文化旅游项目勘察设计服务协议3篇
- GB/T 16180-2014劳动能力鉴定职工工伤与职业病致残等级
- 2023年广东罗浮山旅游集团有限公司招聘笔试题库及答案解析
- DB11-T1835-2021 给水排水管道工程施工技术规程高清最新版
- 解剖篇2-1内脏系统消化呼吸生理学
- 《小学生错别字原因及对策研究(论文)》
- 公司组织架构图(可编辑模版)
- 北师大版七年级数学上册教案(全册完整版)教学设计含教学反思
- 智慧水库平台建设方案
- 系统性红斑狼疮-第九版内科学
- 全统定额工程量计算规则1994
- 粮食平房仓设计规范
评论
0/150
提交评论