版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津第五十九中学高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.某几何体的三视图如图所示,则其体积为()A. B. C. D.参考答案:C【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】根据已知中的三视图,可得该几何体是一个以俯视图为底面的半圆锥,代入锥体体积公式,可得答案.【解答】解:根据已知中的三视图,可得该几何体是一个以俯视图为底面的半圆锥,其底面面积S=π,高h==,故体积V==,故选:C.2.已知,命题,,则.是假命题,,
.是假命题,,
.是真命题,,
.是真命题,,参考答案:.因为,所以当时,,函数单调递减,即对,恒成立,所以是真命题.又全称命题的否定是特称命题,所以是,.故选.【解题探究】本题考查函数的单调性与全称命题的否定.解题首先判断命题的真假,然后再将命题写成的形式,注意特称命题与全称命题否定形式的基本格式.3.函数的单调递减区间是(
)A.
B.
C.
D.参考答案:A略4.在平面直角坐标系xOy中,将点绕原点O逆时针旋转90°到点B,设直线OB与x轴正半轴所成的最小正角为,则等于(
)A. B. C. D.参考答案:A【分析】设直线直线与轴正半轴所成的最小正角为,由任意角的三角函数的定义可以求得的值,依题有,则,利用诱导公式即可得到答案.【详解】如图,设直线直线与轴正半轴所成的最小正角为因为点在角的终边上,所以依题有,则,所以,故选:A【点睛】本题考查三角函数的定义及诱导公式,属于基础题.5.已知,则的值为A. B. C. D.参考答案:B由得。所以,选B.6.已知函数,若,且,则的取值范围是(
)A. B.C. D.参考答案:C【分析】经过讨论可知,利用可得,从而将化为;通过求解函数的值域求得的取值范围.【详解】设若,则,不成立;若,则,不成立若,则
设,则当时,,则单调递减当时,,则单调递增本题正确选项:C【点睛】本题考查利用导数求解函数的最值问题,本题解题的关键是能够通过讨论得到的范围,从而构造出新函数,再利用导数求得结果.7.函数是(A)最小正周期为的奇函数
(B)最小正周期为的偶函数(C)最小正周期为的奇函数
(D)最小正周期为的偶函数参考答案:B.因为,所以函数是最小正周期为的偶函数.8.设两圆C1,C2都与坐标轴相切,且都过点(4,1),则两圆的圆心距|ClC2|=()
A.4B、4C、8D、8-4
参考答案:C
【知识点】圆的标准方程.H3解析:∵两圆C1、C2都和两坐标轴相切,且都过点(4,1),故圆在第一象限内,设圆心的坐标为(a,a),则有|a|=,∴a=5+2,或a=5﹣2,故圆心为(5+2,5+2)和(5﹣2,5﹣2),故两圆心的距离|C1C2|==8,故选C.【思路点拨】圆在第一象限内,设圆心的坐标为(a,a),则有|a|=,解方程求得a值,代入两点间的距离公式可求得两圆心的距离|C1C2|的值.9.已知为虚数单位,则(
).A.
B.
C.
D.参考答案:答案:B10.已知是实数,则“且”是“”的
A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.复数满足=,则=
参考答案:512.设,将的图像向右平移个单位长度,得到的图像,若是偶函数,则的最小值为________.参考答案:【分析】先化简函数f(x),再求出,由题得,给k赋值即得解.【详解】,将的图像向右平移个单位长度得到,因为函数g(x)是偶函数,所以,所以故答案为:【点睛】本题主要考查三角恒等变换和图像的变换,考查三角函数的图像和性质,意在考查学生对这些知识的理解掌握水平和分析推理能力.13.(5分)(2013?兰州一模)定义一种运算令,且x∈,则函数的最大值是
_________.参考答案:略14.底面为正方形,顶点在底面上的射影为底面中心的四棱锥叫做正四棱锥.已知正四棱锥的高为2,体积为12,则该正四棱锥的外接球的表面积为______.参考答案:【分析】根据正四棱锥的体积,求得棱锥的底面边长,再在中,利用正弦定理和余弦定理,求得球的半径,结合球的表面积公式,即可求解.【详解】如图所示,正四棱锥,设正方形的底面边长,因为四棱锥的体积为12,即,解得,再正方形中,可得,在直角中,,可得,在直角中,,可得,在中,由余弦定理可得,所以,则外接圆的直径为,解得,即四棱锥外接球的半径为,所以外接球的表面积为,故答案为:.【点睛】本题主要考查了正四棱锥的结构特征,以及外接球的表面积的计算,其中解答中熟记正四棱锥的结构特征,结合正弦定理和余弦定理,求得外接球的半径是解答的关键,着重考查了空间想象能力,以及推理与运算能力,属于中档试题.15.已知函数在区间(0,2)上是单调增函数,则实数a的取值范围为
▲
.参考答案:[1,+∞)
16.若Sn为等差数列{an}的前n项和,S9=-36,S13=-104,则a5a7的值为
.参考答案:3217.已知则等于
.参考答案:-【知识点】同角三角函数的基本关系式与诱导公式C2由则,sin=-,tan=-,==-【思路点拨】先根据角的范围求出正切值,再求。三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ=2acosθ(a>0),直线l的参数方程为(t为参数),直线l与曲线C相交于A,B两点.(1)写出曲线C的直角坐标方程和直线l的普通方程;(2)若|AB|=2,求a的值.参考答案:【考点】参数方程化成普通方程;简单曲线的极坐标方程.【分析】(1)利用三种方程的互化方法,可得结论;(2)直线与曲线联立,利用弦长公式,建立方程,即可求a的值.【解答】解:(1)曲线C的极坐标方程为ρsin2θ=2acosθ(a>0)可得ρ2sin2θ=2aρcosθ.可得:曲线C的普通方程为:y2=2ax;直线l的参数方程为(t为参数),普通方程为x﹣y﹣2=0;(2)直线与曲线联立可得y2﹣2ay﹣4a=0,∵|AB|=2,∴=2,解得a=﹣5或1.19.某种产品的质量以其指标值来衡量,其指标值越大表明质量越好,且指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的指标值,得到了下面的试验结果:A配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数82042228B配方的频数分布表指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]频数412423210(1)分别估计用A配方,B配方生产的产品的优质品率;(2)已知用B配方生产的一件产品的利润y(单位:元)与其指标值t的关系式为y=,估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述产品平均每件的利润.参考答案:【考点】互斥事件的概率加法公式;相互独立事件的概率乘法公式.【分析】(1)根据所给的样本容量和两种配方的优质的频数,两个求比值,得到用两种配方的产品的优质品率的估计值.(2)根据题意得到变量对应的数字,结合变量对应的事件和第一问的结果写出变量对应的概率,写出分布列和这组数据的期望值.【解答】解:(1)由试验结果知,用A配方生产的产品中优质的频率为=0.3∴用A配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B配方生产的产品中优质品的频率为=0.42∴用B配方生产的产品的优质品率的估计值为0.42;(2)用B配方生产的100件产品中,其质量指标值落入区间[90,94),[94,102),[102,110]的频率分别为0.04,0.54,0.42,∴P(X=﹣2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即X的分布列为X﹣224P0.040.540.42∴X的数学期望值EX=﹣2×0.04+2×0.54+4×0.42=2.68.【点评】本题考查随机抽样和样本估计总体的实际应用,考查频数,频率和样本容量之间的关系,考查离散型随机变量的分布列和期望,本题是一个综合问题.20.在极坐标系中,曲线的极坐标方程为,点,以极点为原点,以极轴为轴的正半轴建立平面直角坐标系,已知直线为参数)与曲线交于两点,且.(1)若为曲线上任意一点,求的最大值,并求出此时点P的坐标;(2)求.参考答案:21.已知椭圆C的方程是=(a>b>0),点A,B分别是椭圆的长轴的左、右端点,左焦点坐标为(﹣4,0),且过点p().(Ⅰ)求椭圆C的方程;(Ⅱ)已知F是椭圆C的右焦点,以AF为直径的圆记为圆M,试问:过P点能否引圆M的切线,若能,求出这条切线与x轴及圆M的弦PF所对的劣弧围成的图形的面积;若不能,说明理由.参考答案:解:(Ⅰ)因为椭圆C的方程为,(a>b>0),∴a2=b2+16,即椭圆的方程为,∵点在椭圆上,∴,解得b2=20或b2=﹣15(舍),由此得a2=36,所以,所求椭圆C的标准方程为.(Ⅱ)由(Ⅰ)知A(﹣6,0),F(4,0),又,则得,所以,即∠APF=90°,△APF是Rt△,所以,以AF为直径的圆M必过点P,因此,过P点能引出该圆M的切线,设切线为PQ,交x轴于Q点,又AF的中点为M(﹣1,0),则显然PQ⊥PM,而,所以PQ的斜率为,因此,过P点引圆M的切线方程为:,即令y=0,则x=9,∴Q(9,0),又M(﹣1,0),所以,因此,所求的图形面积是S=S△PQM﹣S扇形MPF=.考点:圆与圆锥曲线的综合;椭圆的标准方程.专题:综合题.分析:(Ⅰ)由题设知a2=b2+16,即椭圆的方程为,由点在椭圆上,知,由此能求出椭圆C的标准方程.(Ⅱ)由A(﹣6,0),F(4,0),,知,,所以,以AF为直径的圆M必过点P,因此,过P点能引出该圆M的切线,设切线为PQ,交x轴于Q点,又AF的中点为M(﹣1,0),则显然PQ⊥PM,由此能求出所求的图形面积.解答:解:(Ⅰ)因为椭圆C的方程为,(a>b>0),∴a2=b2+16,即椭圆的方程为,∵点在椭圆上,∴,解得b2=20或b2=﹣15(舍),由此得a2=36,所以,所求椭圆C的标准方程为.(Ⅱ)由(Ⅰ)知A(﹣6,0),F(4,0),又,则得,所以,即∠APF=90°,△APF是Rt△,所以,以AF为直径的圆M必过点P,因此,过P点能引出该圆M的切线,设切线为PQ
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年耕地租赁合同
- 广告设备购销合同2024年
- 合伙企业协议格式
- 房地产代理销售协议书2024年
- 服装制造商合作合同
- 2024年二手房屋买卖合同范例
- 担保合作协议填写指南
- 合伙餐馆协议书样本专业
- 装修预算合同范本2024年
- 2024设备搬迁运输合同
- 高教社新国规中职教材《英语1基础模块》英语1-U6
- 健身指导知识考试题库及答案(500题)
- YMO青少年数学思维26届1-6年级全国总决赛试卷
- 简笔画(高职学前教育专业)全套教学课件
- 4.2.1电解池高二化学课件(人教版2019选择性必修1)
- (完整)大体积混凝土测温记录表
- 单人徒手心肺复苏操作评分表(医院考核标准版)
- 教育数字化背景下的创新教学方法及效果评估研究
- 第五章班级活动的设计-与实施
- 小学语文-示儿教学设计学情分析教材分析课后反思
- 《初二班会课件:班级管理与自我管理》
评论
0/150
提交评论