版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级上册压轴题模拟数学综合试卷含答案2.已知△ABC是等边三角形,△ADE的顶点D在边BC上(1)如图1,若AD=DE,∠AED=60°,求∠ACE的度数;(2)如图2,若点D为BC的中点,AE=AC,∠EAC=90°,连CE,求证:CE=2BF;(3)如图3,若点D为BC的一动点,∠AED=90°,∠ADE=30°,已知△ABC的面积为4,当点D在BC上运动时,△ABE的面积是否发生变化?若不变,请求出其面积;若变化请说明理由.2.如图1,在平面直角坐标系中,点,,且,满足,连接,,交轴于点.(1)求点的坐标;(2)求证:;(3)如图2,点在线段上,作轴于点,交于点,若,求证:.3.如图,在平面直角坐标系中,点A(a,0),B(0,b),且a,b满足.(1)直接写出______,______;(2)连接AB,P为内一点,.①如图1,过点作,且,连接并延长,交于.求证:;②如图2,在的延长线上取点,连接.若,点P(2n,−n),试求点的坐标.4.已知,.(1)若,作,点在内.①如图1,延长交于点,若,,则的度数为;②如图2,垂直平分,点在上,,求的值;(2)如图3,若,点在边上,,点在边上,连接,,,求的度数.5.如图1,在平面直角坐标系中,直线AB与轴交于点A、与轴交于点B,且∠ABO=45°,A(-6,0),直线BC与直线AB关于轴对称.(1)求△ABC的面积;(2)如图2,D为OA延长线上一动点,以BD为直角边,D为直角顶点,作等腰直角△BDE,求证:AB⊥AE;(3)如图3,点E是轴正半轴上一点,且∠OAE=30°,AF平分∠OAE,点M是射线AF上一动点,点N是线段AO上一动点,判断是否存在这样的点M,N,使OM+NM的值最小?若存在,请写出其最小值,并加以说明.6.阅读材料1:对于两个正实数,由于,所以,即,所以得到,并且当时,阅读材料2:若,则,因为,,所以由阅读材料1可得:,即的最小值是2,只有时,即=1时取得最小值.根据以上阅读材料,请回答以下问题:(1)比较大小(其中≥1);
-2(其中<-1)(2)已知代数式变形为,求常数的值(3)当=时,有最小值,最小值为(直接写出答案).7.如图,在等边△ABC中,线段AM为BC边上的中线.动点D在直线AM上时,以CD为一边在CD的下方作等边△CDE,连结BE.(1)求∠CAM的度数;(2)若点D在线段AM上时,求证:△ADC≌△BEC;(3)当动D在直线AM上时,设直线BE与直线AM的交点为O,试判断∠AOB是否为定值?并说明理由.8.问题引入:(1)如图1,在中,点O是和平分线的交点,若,则______(用表示):如图2,,,,则______(用表示);拓展研究:(2)如图3,,,,猜想度数(用表示),并说明理由;(3)BO、CO分别是的外角、的n等分线,它们交于点O,,,,请猜想______(直接写出答案).【参考答案】2.(1)60°;(2)见解析;(3)不变,【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;(2)由题意,先求出∠BEC=30°,然后求出∠CF解析:(1)60°;(2)见解析;(3)不变,【分析】(1)由题意,先证△ADE是等边三角形,再证△BAD≌△CAE,得∠ACE=∠B=60°;(2)由题意,先求出∠BEC=30°,然后求出∠CFE=90°,利用直角三角形中30度角所对直角边等于斜边的一半,即可得证;(3)延长AE至F,使EF=AE,连DF、CF,先证明△ADF是等边三角形,然后证明△EGF≌△EHA,结合HG是定值,即可得到答案.【详解】解:(1)根据题意,∵AD=DE,∠AED=60°,∴△ADE是等边三角形,∴AD=AE,∠DAE=60°,∵AB=AC,∠BAC=60°,∴,即,∴△BAD≌△CAE,∴∠ACE=∠B=60°;(2)连CF,如图:∵AB=AC=AE,∴∠AEB=∠ABE,∵∠BAC=60°,∠EAC=90°,∴∠BAE=150°,∴∠AEB=∠ABE=15°;∵△ACE是等腰直角三角形,∴∠AEC=45°,∴∠BEC=30°,∠EBC=45°,∵AD垂直平分BC,点F在AD上,∴CF=BF,∴∠FCB=∠EBC=45°,∴∠CFE=90°,在直角△CEF中,∠CFE=90°,∠CEF=30°,∴CE=2CF=2BF;(3)延长AE至F,使EF=AE,连DF、CF,如图:∵∠AED=90°,EF=AE,∴DE是中线,也是高,∴△ADF是等腰三角形,∵∠ADE=30°,∴∠DAE=60°,∴△ADF是等边三角形;由(1)同理可求∠ACF=∠ABC=60°,∴∠ACF=∠BAC=60°,∴CF∥AB,过E作EG⊥CF于G,延长GE交BA的延长线于点H,易证△EGF≌△EHA,∴EH=EG=HG,∵HG是两平行线之间的距离,是定值,∴S△ABE=S△ABC=;【点睛】本题考查了等边三角形的判定和性质,等腰三角形的判定和性质,垂直平分线的性质,全等三角形的判定和性质,含30度角的直角三角形的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.3.(1);(2)证明见解析;(3)证明见解析.【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直解析:(1);(2)证明见解析;(3)证明见解析.【分析】(1)由非负性可求a,b的值,即可求解;(2)由“SAS”可证△ABP≌△BCQ,可得AB=BC,∠BAP=∠CBQ,可证△ABC是等腰直角三角形,可得∠BAC=45°,可得结论;(3)由“AAS”可证△ATO≌△EAG,可得AT=AE,OT=AG,由“SAS”可证△TAD≌△EAD,可得TD=ED,∠TDA=∠EDA,由平行线的性质可得∠EFD=∠EDF,可得EF=ED,即可得结论.【详解】解:(1)∵a2-2ab+2b2-16b+64=0,∴(a-b)2+(b-8)2=0,∴a=b=8,∴b-6=2,∴点C(2,-8);(2)∵a=b=8,∴点A(0,6),点B(8,0),点C(2,-8),∴AO=6,OB=8,如图1,过点B作PQ⊥x轴,过点A作AP⊥PQ,交PQ于点P,过点C作CQ⊥PQ,交PQ于点Q,∴四边形AOBP是矩形,∴AO=BP=6,AP=OB=8,∵点B(8,0),点C(2-8),∴CQ=6,BQ=8,∴AP=BQ,CQ=BP,又∠APB=∠BCQ∴△ABP≌△BCQ(SAS),∴AB=BC,∠BAP=∠CBQ,∵∠BAP+∠ABP=90°,∴∠ABP+∠CBQ=90°,∴∠ABC=90°,∴△ABC是等腰直角三角形,∴∠BAC=45°,∵∠OAD+∠ADO=∠OAD+∠BAC+∠ABO=90°,∴∠OAC+∠ABO=45°;(3)如图2,过点A作AT⊥AB,交x轴于T,连接ED,∴∠TAE=90°=∠AGE,∴∠ATO+∠TAO=90°=∠TAO+∠GAE=∠GAE+∠AEG,∴∠ATO=∠GAE,∠TAO=∠AEG,又∵EG=AO,∴△ATO≌△EAG(AAS),∴AT=AE,OT=AG,∵∠BAC=45°,∴∠TAD=∠EAD=45°,又∵AD=AD,∴△TAD≌△EAD(SAS),∴TD=ED,∠TDA=∠EDA,∵EG⊥AG,∴EG∥OB,∴∠EFD=∠TDA,∴∠EFD=∠EDF,∴EF=ED,∴EF=ED=TD=OT+OD=AG+OD,∴EF=AG+OD.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.4.(1)3,;(2)①见解析;②的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明解析:(1)3,;(2)①见解析;②的坐标为(,)【分析】(1)先利用幂的乘方和积的乘方化简,再利用单项式的性质求解即可;(2)①连接AC,过点B作BN⊥BP,交CP的延长线于点N,利用SAS证明△OPB≌△OCA,再证明△BNP为等腰直角三角形,利用AAS证明△ACD≌△BND,即可证明AD=DB;②作出如图所示的辅助线,证明△BMP为等腰直角三角形,利用AAS证明△PBF≌△MPE,求得E(2n,n),M(3n−3,n),证明点M,E关于y轴对称,得到3n−3+2n=0,即可求解.【详解】(1)∵,∴,∴,,解得:,,故答案为:3,;(2)①连接AC,∵∠COP=∠AOB=90°,∴∠COP-∠AOP=∠AOB-∠AOP,∴,在△OPB和△OCA中,,∴△OPB≌△OCA(SAS),∴AC=BP,∠OCA=∠OPB=90°,过点B作BN⊥BP,交CP的延长线于点N,∵∠COP=90°,OP=OC,∴∠OCP=∠OPC=∠ACP=45°,∵∠OPB=90°,∴∠BPN=45°,∴△BNP为等腰直角三角形,∴∠BPN=∠N=45°,∴BN=BP=AC,在△ACD和△BND中,,∴△ACD≌△BND(AAS),∴AD=DB;②∵∠AOB=90°,AO=OB,∴△AOB为等腰直角三角形,∴∠OBA=45°,∵∠MBO=∠ABP,∴∠MBO+∠OBP=∠ABP+∠OBP=∠OBA=45°,∴∠MBP=45°,∵OP⊥BP,∴△BMP为等腰直角三角形,∴MP=BP,过点P作y轴的平行线EF,分别过M,B作ME⊥EF于E,BF⊥EF于F,EF交x轴于G,ME交y轴于H,连接OE,∴∠MPE+∠EMP=∠MPE+∠FPB=90°,∴∠EMP=∠FPB,在△PBF和△MPE中,,∴△PBF≌△MPE(AAS),∴BF=EP,PF=ME,∵P(2n,−n),∴BF=EP=EH=2n,PG=EG=n,PF=ME=3−n,∴MH=ME-EH=3−n−2n=3−3n,∴E(2n,n),M(3n−3,n),∴点P,E关于x轴对称,∴OE=OP,∠OEP=∠OPE,同理OM=OE,点M,E关于y轴对称,∴3n−3+2n=0,解得,即点M的坐标为(,).【点睛】本题考查了坐标与图形、全等三角形的判定与性质、等腰直角三角形的判定与性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,利用全等三角形的性质解决问题.5.(1)①15°;②;(2)【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;②构造“一线三垂直”模型,证解析:(1)①15°;②;(2)【分析】(1)①根据等腰直角三角形的性质,连接,得,,所对的直角边是斜边的一半,可得,所以可得,,,和是等腰三角形,由外角性质计算可得;②构造“一线三垂直”模型,证明三角形,利用面积比等于等高的三角形的底边的比,结合已知条件即可解得.(2)构造等边,通过证明,等边代换,得出等腰三角形,代入角度计算即得.【详解】(1)①连接AE,在,因为,,,,,,,,,,,,,,故答案为:.②过C作交DF延长线于G,连接AEAD垂直平分BE,,,,,故答案为:;(2)以AB向下构造等边,连接DK,延长AD,BK交于点T,,,,,,,等边中,,,,,在和中,,等边三角形三线合一可知,BD是边AK的垂直平分线,,,,,故答案为:.【点睛】考查了等腰直角三角形的性质,外角的性质,等腰三角形的判定和性质,构造等边三角形的方法证明全等,全等三角形的性质应用很关键,熟记几何图形的性质和判定是解决图形问题的重要方法依据.6.(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2)过E作EF⊥x轴于点解析:(1)36;(2)证明见解析;(3)3,理由见解析.【分析】(1)根据直线与坐标轴的交点易得A,C的坐标,从而得出AC=12,OB=6,根据三角形面积公式可求解;(2)过E作EF⊥x轴于点F,延长EA交y轴于点H,证△DEF≌△BDO,得出EF=OD=AF,有,得出∠BAE=90°.(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离.再由,在直角三角形中,即可得解.【详解】解:(1)由已知条件得:
AC=12,OB=6
∴(2)过E作EF⊥x轴于点F,延长EA交y轴于点H,∵△BDE是等腰直角三角形,∴DE=DB,∠BDE=90°,∴∵∴∴∵EF轴,∴∴DF=BO=AO,EF=OD∴AF=EF∴∴∠BAE=90°(3)由已知条件可在线段OA上任取一点N,再在AE作关于OF的对称点,当点N运动时,最短为点O到直线AE的距离,即点O到直线AE的垂线段的长,∵,OA=6,∴OM+ON=3【点睛】本题考查的知识点主要是直角三角形的性质及应用,轴对称在最短路径问题中的应用,弄懂题意,作出合理的辅助线是解题的关键.7.(1);(2);(3)0,3.【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料解析:(1);(2);(3)0,3.【分析】(1)根据求差法比较大小,由材料1可知将结果用配方法变形即可得出结论.(2)根据材料(2)的方法,把代数式变形为,解答即可;(3)先将变形为,由材料(2)可知时(即x=0,)有最小值.【详解】解:(1),所以;当时,由阅读材料1可得,,所以;(2),所以;(3)∵x≥0,∴即:当时,有最小值,∴当x=0时,有最小值为3.【点睛】本题主要考查了分式的混合运算和配方法的应用.读懂材料并加以运用是解题的关键.8.(1)30°;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出;(3解析:(1)30°;(2)见解析;(3)是定值,理由见解析【分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,,,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 定金合同范本
- 2024年度演艺经纪代理合同2篇
- 二零二四年度云计算服务定制与运维合同
- 二零二四年度电动折叠自行车购销协议3篇
- 短期劳动力雇佣合同04
- 高级定制服装生产与销售合同(04版)
- 二零二四年度社交电商模式创新与合作合同3篇
- 二零二四年度广告媒体投放合作协议
- 二零二四年度地下水监测井建设合同
- 二零二四年度技术转让合同with技术改进与后续支持
- 甘肃省重点中学2025届生物高三第一学期期末复习检测模拟试题含解析
- 10.1爱护身体(课件)-2024-2025学年统编版道德与法治七年级上册
- 2024年P气瓶充装理论考试题及答案
- 2024年新商务星球版七年级地理上册全册教学课件
- 北京高校物业管理服务人员配置及费用测算指导意见
- 外研版(三起)(2024)三年级上册英语Unit 6《My sweet home》单元整体教学设计及反思
- DB42∕T 2232-2024 湖北省水利工程护坡护岸参考设计图集
- DB41-T 2704-2024 森林抚育技术规程
- 2024-2025学年统编版(2024)道德与法治小学一年级上册教学设计
- 《新时代大学生劳动教育教程(第二版)》大学生劳动教育全套教学课件
- 2024年全国职业院校技能大赛高职组(化学实验技术赛项)考试题库-下(多选、判断题)
评论
0/150
提交评论