四川省成都市都江堰李冰中学2022-2023学年高二数学文测试题含解析_第1页
四川省成都市都江堰李冰中学2022-2023学年高二数学文测试题含解析_第2页
四川省成都市都江堰李冰中学2022-2023学年高二数学文测试题含解析_第3页
四川省成都市都江堰李冰中学2022-2023学年高二数学文测试题含解析_第4页
四川省成都市都江堰李冰中学2022-2023学年高二数学文测试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市都江堰李冰中学2022-2023学年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.(5分)不等式x2+2x<对任意a,b∈(0,+∞)恒成立,则实数x的取值范围是()A.(﹣2,0)B.(﹣∞,﹣2)∪(0,+∞)C.(﹣4,2)D.(﹣∞,﹣4)∪(2,+∞)参考答案:C对任意a,b∈(0,+∞),,所以只需x2+2x<8即(x﹣2)(x+4)<0,解得x∈(﹣4,2)故选C2.如图,四棱锥中,平面,底面是直角梯形,且,,,.则点到平面的距离是(

)

A.

B.

C.

D.

参考答案:C略3.若x,y满足约束条件,则的最大值为()A.-2 B.1 C.2 D.4参考答案:D【分析】已知x,y满足约束条件,画出可行域,目标函数z=y﹣2x,求出z与y轴截距的最大值,从而进行求解;【详解】∵x,y满足约束条件,画出可行域,如图:由目标函数z=y﹣2x的几何意义可知,z在点A出取得最大值,A(﹣3,﹣2),∴zmax=﹣2﹣2×(﹣3)=4,故选:D.【点睛】在解决线性规划的小题时,常用步骤为:①由约束条件画出可行域?②理解目标函数的几何意义,找出最优解的坐标?③将坐标代入目标函数,求出最值;也可将可行域各个角点的坐标代入目标函数,验证,求出最值.4.设3,x,5成等差数列,则x为()A.3 B.4 C.5 D.6参考答案:B【考点】等差数列的通项公式.【分析】由3,x,5成等差数列,可得2x=3+5,解出即可.【解答】解:∵3,x,5成等差数列,∴2x=3+5,解得x=4.故选:B.5.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为()A. B. C. D.参考答案:D【考点】等可能事件的概率.【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【解答】解:4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故选:D.6.当x∈R时,x+的取值范围是()A.(﹣∞,﹣4] B.(﹣∞,﹣4)∪(4,+∞) C.[4,+∞) D.(﹣∞,﹣4]∪[4,+∞)参考答案:D【考点】基本不等式.【分析】讨论x>0,x<0,运用基本不等式a+b≥2(a,b>0,a=b取得等号),即可得到所求范围.【解答】解:当x>0时,x+≥2=4,当且仅当x=2时,取得最小值4;当x<0时,x+=﹣[(﹣x)+(﹣)≤﹣2=﹣4,当且仅当x=﹣2时,取得最大值﹣4.综上可得,x+的取值范围是(﹣∞,﹣4]∪[4,+∞).故选:D.7.函数y=xsinx+cosx在下面哪个区间内是增函数

A.

B.

C.

D.

参考答案:B8.与椭圆有相同的焦点,且一条渐近线方程是的双曲线方程是()A. B. C. D.参考答案:D【考点】椭圆的简单性质.【专题】计算题;转化思想;综合法;圆锥曲线的定义、性质与方程.【分析】求出双曲线方程的焦点坐标为F1(﹣2,0),F2(2,0),设双曲线方程为=1(a>0,b>0),由双曲线性质列出方程和,求出a,b,由此能求出双曲线方程.【解答】解:∵双曲线方程与椭圆有相同的焦点,且一条渐近线方程是,∴双曲线方程的焦点坐标为F1(﹣2,0),F2(2,0),设双曲线方程为=1(a>0,b>0),由双曲线性质得,解得a=1,b=,∴双曲线方程为=1.故选:D.【点评】本题考查双曲线方程的求法,是基础题,解题时要认真审题,注意椭圆性质、双曲线性质的合理运用.9.不等式的解集是()A.

B.C.

D.参考答案:D略10.已知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,则()A.f(1)<ef(0),f B.f(1)>ef(0),fC.f(1)>ef(0),f D.f(1)<ef(0),f参考答案:D【考点】6B:利用导数研究函数的单调性.【分析】构造函数g(x)=,利用导数判断其单调性即可得出.【解答】解:知f(x)是可导的函数,且f′(x)<f(x)对于x∈R恒成立,即f′(x)﹣f(x)<0恒成立,令g(x)=,则g′(x)==<0.∴函数g(x)在R上单调递减.∴g(1)<g(0),g.即,<,化为f(1)<ef(0),f.故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.

.参考答案:略12.有A、B、C、D、E五名同学参加网页设计竞赛,决出了第一到第五的名次,A、B两同学去问成绩,老师对A说:“你没有得第一名”,又对B说:“你是前三名”,从这个问题分析,这五名同学的名次排列共有_______________种可能(用数字作答)参考答案:60略13.每次用相同体积的清水洗一件衣物,且每次能洗去污垢的,若洗n次后,存在的污垢在1%以下,则n的最小值为_________.参考答案:4略14.

如图所示的流程图的输出结果为sum=132,则判断框中?处应填________.参考答案:1115.函数的单调递增区间为____▲______.参考答案:(-1,0)略16.抛物线的焦点到准线的距离是

.参考答案:17.给出下列命题:①直线l的方向向量为=(1,﹣1,2),直线m的方向向量=(2,1,﹣),则l与m垂直;②直线l的方向向量=(0,1,﹣1),平面α的法向量=(1,﹣1,﹣1),则l⊥α;③平面α、β的法向量分别为=(0,1,3),=(1,0,2),则α∥β;④平面α经过三点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),向量=(1,u,t)是平面α的法向量,则u+t=1.其中真命题的是.(把你认为正确命题的序号都填上)参考答案:①④【考点】平面的法向量.【分析】①根据直线l、m的方向向量与垂直,得出l⊥m;②根据直线l的方向向量与平面α的法向量垂直,不能判断l⊥α;③根据平面α、β的法向量与不共线,不能得出α∥β;④求出向量与的坐标表示,再利用平面α的法向量,列出方程组求出u+t的值.【解答】解:对于①,∵=(1,﹣1,2),=(2,1,﹣),∴?=1×2﹣1×1+2×(﹣)=0,∴⊥,∴直线l与m垂直,①正确;对于②,=(0,1,﹣1),=(1,﹣1,﹣1),∴?=0×1+1×(﹣1)+(﹣1)×(﹣1)=0,∴⊥,∴l∥α或l?α,②错误;对于③,∵=(0,1,3),=(1,0,2),∴与不共线,∴α∥β不成立,③错误;对于④,∵点A(1,0,﹣1),B(0,1,0),C(﹣1,2,0),∴=(﹣1,1,1),=(﹣1,1,0),向量=(1,u,t)是平面α的法向量,∴,即;则u+t=1,④正确.综上,以上真命题的序号是①④.故答案为:①④.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分10分)已知函数和的图像关于原点对称,且.(1)求的表达式;(2)若在上是增函数,求实数的取值范围.参考答案:(1)设函数的图象上任意一点关于原点的对称点为,则∵点在函数的图象上∴(2)①②ⅰ)ⅱ)19.一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率;(2)记抽检的产品件数为,求的分布列和数学期望.参考答案:(1);(2)可取1,2,3,123.20.火车站对乘客退票收取一定的费用,具体办法是:按票价每10元(不足10元按10元计算)核收2元;2元以下的票不退.试写出票价为x元的车票退掉后,返还的金额y元的算法的程序框图.参考答案:21.(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD是边长为2的正方形,PB⊥BC,PD⊥CD,且PA=2,E为PD中点。(12分)(1)求二面角B—EC—A的正弦值;(2)在线段BC上是否存在点F,使得E到平面PAF的距离为?若存在,确定点F的位置,若不存在,请说明理由参考答案:(1)取PA中点G,连接EG、BG,过A作AH⊥BG于H,连接HE、AE。

又∵BC⊥面PAB

∴AH⊥面GBCE易求CE=∴∠AHE为二面角B—EC—A的平面角,易求在RtΔAHE中,(2)设存在点F满足题意,过D作DM⊥AF于M,连PF易证:DM⊥面APF

∵E为PD为中点,E到面PAF距离为∴DM=,由平知识知ΔDAM∽ΔAFB求得AF=∴BF=1,F为BC中点,∴存在满足题意的点F。22.装有除颜色外完全相同的6个白球、4个黑球和2个黄球的箱中随机地取出两个球,规定每取出1个黑球赢2元,而每取出1个白球输1元,取出黄球无输赢.(1)以X表示赢得的钱数,随机变量X可以取哪些值?求X的分布列;(2)求出赢钱(即时)的概率.参考答案:(1)见解析;(2)【分析】(1)从箱中取两个球的情形有6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.即可求得随机变量X的可能取值为-2,-1,0,1,2,4,分别求出相应的概率,由此能求出X的概率分布列.(2),由此能求出赢钱(即时)的概率.【详解】解:(1)从箱中取两个球的情形有以下6种:{2个白球},{1个白球,1个黄球},{1个白球,1个黑球},{2个黄球},{1个黑球,1个黄球},{2个黑球}.当取到2个白球时,随

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论