版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广西壮族自治区南宁市周鹿中学高三数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线C:﹣=1(a>0,b>0)的左焦点为F(﹣c,0),M、N在双曲线C上,O是坐标原点,若四边形OFMN为平行四边形,且四边形OFMN的面积为cb,则双曲线C的离心率为()A. B.2 C.2 D.2参考答案:D【考点】双曲线的简单性质.【分析】设M(x0,y0),y0>0,由四边形OFMN为平行四边形,四边形OFMN的面积为cb,由x0=﹣,丨y0丨=b,代入双曲线方程,由离心率公式,即可求得双曲线C的离心率.【解答】解:双曲线C:﹣=1(a>0,b>0)焦点在x轴上,设M(x0,y0),y0>0,由四边形OFMN为平行四边形,∴x0=﹣,四边形OFMN的面积为cb,∴丨y0丨c=cb,即丨y0丨=b,∴M(﹣,b),代入双曲线可得:﹣=1,整理得:,由e=,∴e2=12,由e>1,解得:e=2,故选D.2.已知四点、、、,设直线与直线的交点为,则点的轨迹方程为
(
)
A.
B.
C.
D.参考答案:答案:A3.若,则的值为A.
B.
C.
D.参考答案:C4.已知集合、为整数集,则集合中所有元素的和为(
)A.1
B.2
C.3
D.4参考答案:C5.已知Sn是等差数列{an}的前n项和,若a7=9a3,则=()A.9 B.5 C. D.参考答案:A【考点】等差数列的性质.【专题】计算题;转化思想;综合法;等差数列与等比数列.【分析】利用等差数列的通项及求和公式,即可得出结论.【解答】解:∵等差数列{an},a7=9a3,∴a1+6d=9(a1+2d),∴a1=﹣d,∴==9,故选:A.【点评】本题考查等差数列的通项及求和公式,考查学生的计算能力,属于中档题.6.函数(e为自然对数的底数)有两个极值点,则实数a的取值范围是A.
B.(-∞,0)
C.
D.(0,+∞)参考答案:A7.从1,2,3,4,5,6,7,8中随机取出一个数为x,执行如图所示的程序框图,则输出的x不小于40的概率为()A. B. C. D.参考答案:B【考点】EF:程序框图.【分析】由程序框图的流程,写出前2项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于40得到输入值的范围,利用几何概型的概率公式求出输出的x不小于40的概率.【解答】解:经过第一次循环得到x=3x+1,n=2,经过第二循环得到x=3(3x+1)+1,n=3,此时输出x,输出的值为9x+4,令9x+4≥40,得x≥4,由几何概型得到输出的x不小于40的概率为:.故选:B.8.设集合,那么“”是“”的(
)A.充分而不必要条件
B.必要而不充分条件C.充要条件
D.既不充分也不必要条件参考答案:A9.已知集合A={x|x>1},B={x|-1<x<2},则A∩B等于().A.{x|-1<x<2}
B.{x|x>-1}C.{x|-1<x<1}
D.{x|1<x<2}参考答案:D10.若x,y满足不等式组,则的最小值为(
)A.-5 B.-4 C.-3 D.-2参考答案:A【分析】画出不等式组表示的平面区域,平移目标函数,找出最优解,求出的最小值.【详解】画出,满足不等式组表示的平面区域,如图所示平移目标函数知,当目标函数过点时,取得最小值,由得,即点坐标为∴的最小值为,故选A.【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.二、填空题:本大题共7小题,每小题4分,共28分11.函数在内单调递减,则实数a的范围为
▲
.参考答案:【答案解析】解析:解:因为函数的导数为,所以.【思路点拨】导数与函数的单调性之间的关系,根据函数的导数,我们直接确定a的取值范围.12.已知函数,若方程有且仅有两个解,则实数的取值范围是
.参考答案:
略13.已知的展开式中第三项与第五项的系数之比为-,其中i=-1,则展开式中常数项是
;参考答案:
4514.(不等式选讲)已知a,b均为正数且的最大值为
.参考答案:15.设0<θ<π,,则sin(1+cosθ)的最大值是
.参考答案:解:令y=sin(1+cosθ)>0,则y2=4sin2cos4=2·2sin2cos2cos2≤2()3.
∴y≤.当tan=时等号成立.16.函数,其定义域为
。参考答案:答案:
17.已知数列{an}中,a1=1,an+1=an+n,利用如图所示的程序框图计算该数列的第10项,则判断框中应填的语句是.参考答案:n≤9或n<10略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.不等式选讲已知函数f(x)=|x-2|,g(x)=-|x+3|+m.(1)解关于x的不等式f(x)+a-1>0(a∈R);(2)若函数f(x)的图象恒在函数g(x)图象的上方,求m的取值范围.参考答案:略19.求证:对任意的有成立.参考答案:
用数学归纳法证明:
①当时,不等式成立;②假设当(,)时,不等式成立,即,那么当时
=∴当时,不等式成立。由①②知对任意的,不等式成立.
略20.(本小题满分14分)已知函数(1)求函数的定义域;(2)若,试根据单调性定义确定函数的单调性;(3)若函数是增函数,求的取值范围。参考答案:【知识点】定义域;单调性.B1,B3【答案解析】(1)(2)略(3)
解析:解:(1)由的定义域是(2)若则,,所以函数为增函数.,所以是增函数,,联立可知【思路点拨】根据解析式成立的条件求出定义域;利用概念证明单调性;最后根据条件求出a的取值范围.21.如图所示:湖面上甲、乙、丙三艘船沿着同一条直线航行,某一时刻,甲船在最前面的A点处,乙船在中间B点处,丙船在最后面的C点处,且BC:AB=3:1.一架无人机在空中的P点处对它们进行数据测量,在同一时刻测得∠APB=30°,∠BPC=90°.(船只与无人机的大小及其它因素忽略不计)(1)求此时无人机到甲、丙两船的距离之比;(2)若此时甲、乙两船相距100米,求无人机到丙船的距离.(精确到1米)参考答案:【考点】HU:解三角形的实际应用.【分析】(1)利用正弦定理,即可求此时无人机到甲、丙两船的距离之比;(2)若此时甲、乙两船相距100米,由余弦定理求无人机到丙船的距离.【解答】解:(1)在△APB中,由正弦定理,得,,在△BPC中,由正弦定理,得,又,sin∠ABP=sin∠CBP,故.即无人机到甲、丙两船的距离之比为.(2)由BC:AB=3:1得AC=400,且∠APC=120°,由(1),可设AP=2x,则CP=3x,在△APC中,由余弦定理,得160000=(2x)2+(3x)2﹣2(2x)(3x)cos120°,解得,即无人机到丙船的距离为≈275米.【点评】本题考查利用数学知识解决实际问题,考查正弦定理、余弦定理的运用,属于中档题.22.如图,在正△ABC中,点D,E分别在边AC,AB上,且AD=AC,AE=AB,BD,CE相交于点F.(Ⅰ)求证:A,E,F,D四点共圆;(Ⅱ)若正△ABC的边长为2,求,A,E,F,D所在圆的半径.参考答案:考点:分析法和综合法.专题:计算题;证明题.分析:(I)依题意,可证得△BAD≌△CBE,从而得到∠ADB=∠BEC?∠ADF+∠AEF=π,即可证得A,E,F,D四点共圆;(Ⅱ)取AE的中点G,连接GD,可证得△AGD为正三角形,GA=GE=GD=,即点G是△AED外接圆的圆心,且圆G的半径为.解答: (Ⅰ)证明:∵AE=AB,∴BE=AB,∵在正△ABC中,AD=AC,∴AD=BE,又∵AB=BC,∠BAD=∠CBE,∴△BAD≌△CBE,∴∠ADB=∠BEC,即∠ADF+∠AEF=π,所以A,E,F,D四点共圆.…(Ⅱ)解:如图,取AE的中点G,连接GD,则AG=G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024冷库租赁合同书范本(适用小型企业)
- 2024年度互联网广告技术服务合同
- 2024年买卖合同标的为新能源汽车
- 2024年度影视制作与发行承包合同
- 2024年度房地产商业综合体建设项目施工合同
- 公租房个人收入证明(12篇)
- 2024年度安置房社区文化活动合同
- 手机教学课件教学
- 2024年度品牌合作框架协议
- 2024年度特许经营合同标的及许可使用范围
- 海洋工程柔性立管发展概况
- 汉语教师志愿者培训大纲
- 护理导论 评判性思维
- SPC培训资料_2
- 学习适应性测验(AAT)
- ADS创建自己的元件库
- MATLAB仿真三相桥式整流电路(详细完美)
- 2019年重庆普通高中会考通用技术真题及答案
- 天秤座小奏鸣曲,Libra Sonatine;迪安斯,Roland Dyens(古典吉他谱)
- 钢筋混凝土工程施工及验收规范最新(完整版)
- 光缆施工规范及要求
评论
0/150
提交评论