版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省永州市三口塘乡中学高一数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.方程的解所在的区间是()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:C【考点】函数零点的判定定理.【分析】构造函数,利用零点判定定理情节端点函数值,判断即可.【解答】解:设,则,所以方程的解所在的区间是(2,3).故选:C.2.函数上的最大值和最小值之和为,则的值为
(
)A.
B.
C.
D.参考答案:B略3.在实数的原有运算法则中,我们补充定义新运算“⊙”如下:当时,⊙=;当时,⊙=,则函数=1⊙2⊙),的最大值等于(
)A.
B.
C.
D.12参考答案:C4.在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲乙两个盒子中各取出1个球,球的标号分别记做a,b,每个球被取出的可能性相等,则|a﹣b|≤1的概率为()A. B. C. D.参考答案:B【考点】列举法计算基本事件数及事件发生的概率.【专题】计算题;整体思想;定义法;概率与统计.【分析】所有的数对(a,b)共有5×5=25个,而满足|a﹣b|≤1的数对用列举法求得有13个,由此求得所求事件的概率.【解答】解:所有的数对(a,b)共有5×5=25个,而满足|a﹣b|≤1的数对(a,b)有(1,1),(1,2),(2,1)、(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5)共计13个,故|a﹣b|≤1的概率为故选:B.【点评】本题考主要查古典概型问题,可以列举出试验发生包含的事件和满足条件的事件,列举法,是解决古典概型问题的一种重要的解题方法,属于基础题.5.某同学为了计算的值,设计了如图所示的程序框图,则①处的判断框内应填入(
).A.
B.
C.
D.参考答案:B分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知该程序的作用是累加并输出的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.详解:模拟程序的运行,可得
满足条件,执行循环体,满足条件,执行循环体,
…
满足条件,执行循环体,此时,应该不满足条件,退出循环输出.
则循环体的判断框内应填入的条件是:?
故选:B.6.如果指数函数在上是减函数,则实数的取值范围是---(
)A.
B.
C.
D.参考答案:C7.复数的虚部为(
)A.3i B.-7i C.3 D.-7参考答案:C【分析】先求得,再利用复数运算法则,化简复数后,求其虚部即可.【详解】因为,故,故其虚部为3.故选:C.【点睛】本题考查复数的乘法运算,复数的模长求解,以及虚部的辨识,属综合基础题.8.三个数的大小关系为(A)
(B)
(C)
(D)参考答案:D9.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。则完成(1)、(2)这两项调查宜采用的抽样方法依次是(
)A.分层抽样法,系统抽样法
B.分层抽样法,简单随机抽样法C.系统抽样法,分层抽样法
D.简单随机抽样法,分层抽样法参考答案:B10.为了得到函数的图象,只需将函数y=sin2x的图象(
)
A.向右平移
B.向左平移
C.向右平移
D.向左平移参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.函数y=log2(x2﹣3x﹣4)的单调增区间是
.参考答案:(4,+∞)【考点】复合函数的单调性.【专题】函数的性质及应用.【分析】令t=x2﹣3x﹣4>0,求得函数的定义域,根据y=log2t,本题即求二次函数t的增区间,再利用二次函数的性质可得函数t的增区间.【解答】解:令t=x2﹣3x﹣4>0,求得x<﹣1,或x>4,故函数的定义域为(﹣∞,﹣1)∪(4,+∞),且y=log2t,故本题即求二次函数t的增区间.再利用二次函数的性质可得函数t的增区间为(4,+∞),故答案为:(4,+∞).【点评】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.12.函数的单调递增区间是
参考答案:13.在△ABC中,∠A,∠B,∠C所对边的长分别为a,b,c.已知a+c=2b,sinB=sinC,则=.参考答案:【考点】HS:余弦定理的应用;HQ:正弦定理的应用.【分析】由题意和正弦定理可得a=b=c,代入余弦定理可得cosC,由二倍角公式和三角形内角的范围可得.【解答】解:∵在△ABC中a+c=2b,sinB=sinC,∴由正弦定理可得a+c=2b,b=c,联立可解得a=b=c,∴由余弦定理可得cosC===,再由二倍角公式可得cosC=1﹣2sin2=,解得=或=﹣,再由三角形内角的范围可得∈(0,)故=故答案为:14.函数的最小正周期是________.参考答案:π【分析】根据函数的周期公式计算即可.【详解】函数的最小正周期是.故答案为:【点睛】本题主要考查了正切函数周期公式的应用,属于基础题.15.已知锐角三角形的边长分别为2、3、x,则x的取值范围是
_______________参考答案:<x<略16.已知指数函数是R上的增函数,则a的范围是
参考答案:a>117.当时,函数的最大值为__________.参考答案:21【分析】根据题干中的条件可得到二次函数的对称轴,再由二次函数的性质得到最值即可.【详解】当时,函数,对称轴为x=2,在所给区间内,根据二次函数的性质得到在x=-3处取得最大值,代入得到21.故答案为:21.【点睛】这个题目考查了二次函数在小区间上的最值的求法,一般是讨论轴和区间的位置关系,结合二次函数图像的性质得到相应的最值.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C:,直线l1过定点.(1)若l1与圆相切,求l1的方程;(2)若l1与圆相交于P,Q两点,线段PQ的中点为M,又l1与的交点为N,判断是否为定值.若是,求出定值;若不是,请说明理由.参考答案:(1)若直线的斜率不存在,即直线方程为,符合题意;
若直线的斜率存在,设即,由题意知,,
解得,,所以,所以求直线方程是或;(2)直线与圆相交,斜率必存在,且不为0,可设.由解得又直线CM与垂直,由,得
,为定值.19.已知全集U={1,2,3,4,5,6,7,8,9},A∩(CUB)={1,3,5,7},CU(A∪B)={9},求集合B.参考答案:依题意可得,又,,.
6分.
10分20.(本题满分10分,不计入总分)设为实数,记函数的最大值为。(1)设,求的取值范围,并把表示为的函数;(2)求.参考答案:解:(1)因为,所以要使有意义,必须且,即因为,且---------------------------------①所以得取值范围是
由①得所以,;-------------------------------2分(2)由题意知即为函数的最大值。因为直线是抛物线的对称轴,所以可分以下几种情况进行讨论:1
当时函数,的图像是开口向上的抛物线的一段,由知在上单调递增,故;---------4分②当时,,,有;------------------------------------6分③当时,函数,的图像是开口向下的抛物线的一段,若,即时,,若,即时,,
若,即时,------------------------9分综上,有----------------------------------------------10分21.设.(1)求f(x)的单调递增区间;(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数的图象,求的值.参考答案:(Ⅰ)由………………4分由得所以,的单调递增区间是(或).…6分(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版学校校办工厂风险管理与承包经营合同3篇
- 二零二五年度木材市场行情预测与分析咨询合同4篇
- 2025年度环保材料研发与生产合作合同范本4篇
- 2025版旅游度假区租赁与旅游服务合作协议3篇
- 2025年度智能交通系统保密管理与服务合同
- 二零二五年度科技型中小企业贷款合同
- 2025年度知识产权授权委托书签订协议
- 2025年度门面出租合同终止与租赁合同终止后合同解除及违约赔偿协议
- 2025年度银行存款账户远程开户服务协议
- 2025年度私人房产使用权转让与智能家居系统安装合同
- 2024年全国体育专业单独招生考试数学试卷试题真题(含答案)
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- DB45T 1950-2019 对叶百部生产技术规程
- 2025届河北省衡水市衡水中学高考仿真模拟英语试卷含解析
- 新修订《保密法》知识考试题及答案
- 电工基础知识培训课程
- 住宅楼安全性检测鉴定方案
- 广东省潮州市潮安区2023-2024学年五年级上学期期末考试数学试题
- 市政道路及设施零星养护服务技术方案(技术标)
- 选择性必修一 期末综合测试(二)(解析版)2021-2022学年人教版(2019)高二数学选修一
- 《论语》学而篇-第一课件
评论
0/150
提交评论