版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京丰台区南苑中学高一数学理下学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知等差数列满足,则的最小值为
A.1
B.4
C.6
D.8参考答案:B2.某学校高一年级共有480名学生,为了调查高一学生的数学成绩,采用系统抽样的方法抽取30名学生作为调查对象.将480名学生随机从1~480编号,按编号顺序平均分成30组(1~16号,17~32号,…,465~480号),若从第1组中用抽签法确定的号码为5,则第8组中被抽中学生的号码是()A.25 B.133 C.117 D.88参考答案:C根据系统抽样样本编号的确定方法进行求解,因为第1组抽出的号码为5,分组间隔为16,所以第8组应抽出的号码是(8-1)×16+5=117。选C。点睛:系统抽样则主要考查分组数和由第一组中抽取的样本推算其他各组应抽取的样本,即等距离的特性,解题的关键是的关键是掌握系统抽样的原理及步骤。3.下列四组函数中表示同一函数的是(
)A.与
B.与C.与
D.与参考答案:C试题分析:A项,与的解析式不同,不是同一函数;B项,的定义域为,的定义域为,不是同一函数;C项,与定义域都是,且解析式相同,是同一函数;D项,的定义域为,的定义域为,不是同一函数.故选C.考点:函数的三要素.【易错点晴】本题考查学生对函数三要素的掌握,属于易错题目.函数的三要素是函数的定义域,值域和对应法则,因此在判断两个函数是否是同一函数时,首先要看定义域是否相等,即要满足“定义域优先”的原则,再看解析式是否可以化简为同一个式子,如果定义域与解析式均相同,则函数的值域必然也相同,若其中任一个不一致,则不是同一函数.4.已知实数a1,a2,a3,a4,a5构成等比数列,其中a1=2,a5=32,则公比q的值为A.2
B.-2
C.2或-2
D.4
参考答案:C5.已知命题p:函数y=loga(ax+2a)(a>0且a≠1)的图象必过定点(-1,1);命题q:函数y=f(x+1)的图象关于原点对称,则y=f(x)的图象关于点(-1,0)对称,则()A.“p且q”为真
B.“p或q”为假[数理
化
网C.p假q真
D.p真q假参考答案:D略6.已知一几何体的三视图如图所示,则该几何体的体积是()A.6 B.9 C.12 D.18参考答案:B【考点】由三视图求面积、体积.【专题】空间位置关系与距离.【分析】由已知中的三视图,可知该几何体是一个以俯视图为底面的锥体,分别计算底面面积和高,代入锥体体积公式,可得答案.【解答】解:由已知中的三视图,可知该几何体是一个以俯视图为底面的锥体,其底面面积S=,高h=3,故该几何体的体积V==9,故选:B【点评】本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.若是互不相同的直线,是平面,则下列命题中正确的是(
)A.若则
B.若则C.若则
D.若则参考答案:C8.sin210°=()A. B. C.﹣ D.﹣参考答案:C【考点】运用诱导公式化简求值.【分析】利用诱导公式可得sin210°=sin=﹣sin30°,化简得出结果.【解答】解:sin210°=sin=﹣sin30°=﹣,故选C.9.若偶函数在上是增函数,则下列关系式中成立的是(
)A.
B.C.
D.参考答案:D10.已知扇形的弧长为4cm,圆心角为2弧度,则该扇形的面积为(A)
4cm2
(B)6cm2 (C)8cm2 (D)16cm2参考答案:A
二、填空题:本大题共7小题,每小题4分,共28分11.若函数是偶函数时,,则满足的实数x取值范围是
.参考答案:(-5,4)
∵函数f(x)是偶函数,且x≥0时,f(x)=lg(x+1),∴x≥0时,f(x)单调递增,∴x<0时,f(x)单调递减.又f(9)=lg(9+1)=1,∴不等式f(2x+1)<1可化为f(2x+1)<f(9), ∴|2x+1|<9,∴-9<2x+1<9,解得-5<x<4,∴实数取值范围是(-5,4).
12.在△ABC中,已知sinAsinBcosC=sinAsinCcosB+sinBsinCcosA,若a、b、c分别是角A、B、C所对的边,则的最大值为.参考答案:【考点】HR:余弦定理;HP:正弦定理.【分析】根据正弦、余弦定理化简已知条件,然后利用基本不等式即可求出所求式子的最大值.【解答】解:在三角形中,由正、余弦定理可将原式转化为:ab?=ac?+bc?,化简得:3c2=a2+b2≥2ab,故≤,即的最大值为.故答案为:13.不等式组所表示的平面区域的面积等于
参考答案:14.已知数列{an}满足:,其前n项的和为Sn,则_____,当Sn取得最小值时,n的值为______.参考答案:-39
8【分析】根据数列的通项公式判断出数列是等差数列,并求得首项和公差,进而求得的值.利用,求得当为何值时,取得最小值.【详解】由于,故是等差数列,且首项,公差.所以.令,解得,故当时,取得最小值.【点睛】本小题主要考查等差数列通项公式,考查等差数列前项和公式,考查等差数列前项和的最小值有关问题的求解,属于基础题.15.函数的部分图象如图所示,则函数f(x)的解析式为________.参考答案:【分析】根据三角函数的图象,求出函数的周期,进而求出和即可得到结论.【详解】由图象得,,则周期,则,则,当时,,则,即即,即,,,当时,,则函数的解析式为,故答案为:【点睛】本题主要考查三角函数解析式的求解,根据三角函数图象求出,和的值是解决本题的关键.16.已知数列{an}满足,则__________.参考答案:【分析】数列为以为首项,1为公差的等差数列。【详解】因为所以又所以数列为以为首项,1为公差的等差数列。所以所以故填【点睛】本题考查等差数列,属于基础题。17.已知定义域为R的奇函数y=f(x)的图象关于直线x=1对称,f(1)=2,则f(3)+f(4)=.参考答案:﹣2【考点】函数奇偶性的性质.【分析】利用函数的奇偶性、周期性即可得出.【解答】解:∵奇函数y=f(x)的图象关于直线x=1对称,f(1)=2,∴f(3)=f(﹣1)=﹣f(1)=﹣2,由f(1)=2,f(3)=﹣2,故f(2)=0,故f(x)是以4为周期的函数,故f(4)=f(0)=0,故f(3)+f(4)=﹣2,故答案为:﹣2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)如图,在底面半径为2、母线长为4的圆锥中内接一个高为的圆柱,求圆柱的体积及表面积.参考答案:19.(本题满分10分)求经过点P(3,1)且与圆x2+y2=9相切的直线方程.参考答案:解法一:当过点P的切线斜率存在时,设所求切线的斜率为k,由点斜式可得切线方程为y-1=k(x-3),即kx-y-3k+1=0,∴,解得k=-.故所求切线方程为-x-y+4+1=0,即4x+3y-15=0.当过点P的切线斜率不存在时,方程为x=3,也满足条件.故所求圆的切线方程为4x+3y-15=0或x=3.解法二:设切线方程为y-1=k(x-3),将方程组,消去y并整理得(k2+1)x2-2k(3k-1)x+9k2-6k-8=0.因为直线与圆相切,∴Δ=0,
即[-2k(3k-1)]2-4(k2+1)(9k2-6k-8)=0.解得k=-.
所以切线方程为4x+3y-15=0.又过点P(3,1)与x轴垂直的直线x=3也与圆相切,故所求圆的切线方程为4x+3y-15=0或x=3.20.已知,,求及的值.参考答案:,.【分析】计算出的取值范围,判断出的符号,利用同角三角函数的平方关系计算出的值,然后利用半角公式计算出的值.【详解】,所以,,且,,,由,得.【点睛】本题考查利用同角三角函数的基本关系求值,以及利用半角公式求值,在计算时,首先要考查角的象限,确定所求函数值的符号,再利用相关公式进行计算,考查运算求解能力,属于基础题.21.(12分)(2015春?成都校级月考)(1)化简;
(2)计算:4+2log23﹣log2.参考答案:考点:对数的运算性质;运用诱导公式化简求值.
专题:函数的性质及应用;三角函数的求值.分析:(1)根据诱导公式和二倍角公式化简即可;(2)根据对数的运算性质计算即可.解答:解:(1)==﹣;
(2)4+2log23﹣log2=2+log29﹣log2=2+log28
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年04月中国农业发展银行广东省分行纪委办调查专业人才社会招考笔试历年参考题库附带答案详解
- 2025年度常州消防设施检测与鉴定合同4篇
- 2024版水泥混凝土运输合同书
- 2025年度城市基础设施配套拆迁施工合同4篇
- 专业菊花供应商2024年销售协议版B版
- 《流行病症:新型冠状病毒肺炎》课件
- 二零二五年度玻璃原材料期货交易合同6篇
- 2024年03月广东中信银行深圳分行社会招考笔试历年参考题库附带答案详解
- 二零二五版存量房市场政策研究合同3篇
- 2024简易散伙协议规范格式
- 食堂经营方案(技术标)
- 代收实收资本三方协议范本
- 人教版八年级英语下册全册课件【完整版】
- 乒乓球比赛表格
- 商务接待表格
- 肠梗阻导管治疗
- word小报模板:优美企业报刊报纸排版设计
- 移动商务内容运营(吴洪贵)任务五 其他内容类型的生产
- 汉语教学 《成功之路+进步篇+2》第17课课件
- 三十颂之格助词【精品课件】-A3演示文稿设计与制作【微能力认证优秀作业】
- 浙江省绍兴市2023年中考科学试题(word版-含答案)
评论
0/150
提交评论