31990403第7章概率初步(续)(知识清单)-2021-2022学年高二数学考试满分全攻略(沪教版2020选修第二册)_第1页
31990403第7章概率初步(续)(知识清单)-2021-2022学年高二数学考试满分全攻略(沪教版2020选修第二册)_第2页
31990403第7章概率初步(续)(知识清单)-2021-2022学年高二数学考试满分全攻略(沪教版2020选修第二册)_第3页
31990403第7章概率初步(续)(知识清单)-2021-2022学年高二数学考试满分全攻略(沪教版2020选修第二册)_第4页
31990403第7章概率初步(续)(知识清单)-2021-2022学年高二数学考试满分全攻略(沪教版2020选修第二册)_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第7章概率初步(续)知识清单一条件概率的理解条件概率:一般地,设A,B为两个随机事件,且P(A)>0,则P(B|A)=eq\f(PAB,PA)为在事件A发生的条件下,事件B发生的条件概率,简称条件概率.注意点:A与B相互独立时,可得P(AB)=P(A)P(B),则P(B|A)=P(B).判断是不是条件概率主要看一个事件的发生是否是在另一个事件发生的条件下进行的二利用定义求条件概率利用定义计算条件概率的步骤(1)分别计算概率P(AB)和P(A).(2)将它们相除得到条件概率P(B|A)=eq\f(PAB,PA),这个公式适用于一般情形,其中AB表示A,B同时发生.三缩小样本空间求条件概率利用缩小样本空间法求条件概率的方法(1)缩:将原来样本空间Ω缩小为事件A,原来的事件B缩小为事件AB.(2)数:数出A中事件AB所包含的样本点.(3)算:利用P(B|A)=eq\f(nAB,nA)求得结果.四概率的乘法公式概率的乘法公式:对任意两个事件A与B,若P(A)>0,则P(AB)=P(A)P(B|A).注意点:(1)P(AB)表示A,B都发生的概率,P(B|A)表示A先发生,然后B发生;(2)在P(B|A)中,事件A成为样本空间,而在P(AB)中,样本空间为所有事件的总和;(3)当P(B|A)=P(B)时,事件A与事件B是相互独立事件.五互斥事件的条件概率条件概率的性质设P(A)>0,则(1)P(Ω|A)=1.(2)如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).(3)设eq\x\to(B)和B互为对立事件,则P(eq\x\to(B)|A)=1-P(B|A).注意点:(1)A与B互斥,即A,B不同时发生,则P(AB)=0,故P(B|A)=0;(2)互斥事件的条件概率公式可以将复杂事件分解为简单事件的概率和.六全概率公式全概率公式:一般地,设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,有P(B)=eq\i\su(i=1,n,P)(Ai)P(B|Ai).七多个事件的全概率问题“化整为零”求多事件的全概率问题(1)如图,P(B)=eq\i\su(i=1,3,P)(Ai)P(B|Ai).(2)已知事件B的发生有各种可能的情形Ai(i=1,2,…,n),事件B发生的可能性,就是各种可能情形Ai发生的可能性与已知在Ai发生的条件下事件B发生的可能性的乘积之和.八贝叶斯公式*贝叶斯公式:设A1,A2,…,An是一组两两互斥的事件,A1∪A2∪…∪An=Ω,且P(Ai)>0,i=1,2,…,n,则对任意的事件B⊆Ω,P(B)>0,有P(Ai|B)=eq\f(PAiPB|Ai,PB)=eq\f(PAiPB|Ai,\i\su(k=1,n,P)AkPB|Ak),i=1,2,…,n.贝叶斯公式的内含(1)公式P(A1|B)=eq\f(PA1B,PB)=eq\f(PA1PB|A1,PB)反映了P(A1B),P(A1),P(B),P(A1|B),P(B|A1)之间的互化关系.(2)P(A1)称为先验概率,P(A1|B)称为后验概率,其反映了事情A1发生的可能在各种可能原因中的比重.

九随机变量的概念及分类1.随机变量:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.2.离散型随机变量:可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量,通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.注意点:离散型随机变量的特征:(1)可以用数值表示;(2)试验之前可以判断其可能出现的所有值,但不能确定取何值;(3)试验结果能一一列出.十离散型随机变量的分布列1.离散型随机变量的分布列:一般地,设离散型随机变量X的可能取值为x1,x2,…,xn,我们称X取每一个xi的概率P(X=xi)=pi,i=1,2,3,…,n为X的概率分布列,简称分布列.离散型随机变量的分布列可以用表格表示:Xx1x2…xnPp1p2…pn离散型随机变量的分布列的性质:(1)pi≥0,i=1,2,…,n;(2)p1+p2+…+pn=1.2.对于只有两个可能结果的随机试验,用A表示“成功”,eq\x\to(A)表示“失败”,定义X=eq\b\lc\{\rc\(\a\vs4\al\co1(1,A发生,,0,\x\to(A)发生.))如果P(A)=p,则P(eq\x\to(A))=1-p,那么X的分布列如表所示.X01P1-pp我们称X服从两点分布或0-1分布.注意点:随机变量X只取0和1,才是两点分布,否则不是.十一分布列的性质及应用分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.十二n重伯努利试验1.n重伯努利试验:将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征:(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.注意点:在相同条件下,n重伯努利试验是有放回地抽样试验.十三、二项分布的推导二项分布:一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k,k=0,1,2,…,n.如果随机变量X的分布列具有上式的形式,则称随机变量X服从二项分布,记作X~B(n,p).注意点:(1)由二项式定理可知,二项分布的所有概率和为1.(2)两点分布与二项分布的关系:两点分布是只进行一次的二项分布.n重伯努利试验概率求法的三个步骤(1)判断:依据n重伯努利试验的特征,判断所给试验是否为n重伯努利试验.(2)分拆:判断所求事件是否需要分拆.(3)计算:就每个事件依据n重伯努利试验的概率公式求解,最后利用互斥事件概率加法公式计算.十四、二项分布的简单应用利用二项分布求解“至多”“至少”问题的概率,其实质是求在某一范围内的概率,一般转化为几个互斥事件发生的概率的和,或者利用对立事件求概率.十五、二项分布的均值与方差1.若X服从两点分布,则E(X)=p,D(X)=p(1-p).2.若X~B(n,p),则E(X)=np,D(X)=np(1-p).解决此类问题第一步是判断随机变量X服从什么分布,第二步代入相应的公式求十六、二项分布的实际应用二项分布的实际应用类问题的求解步骤(1)根据题意设出随机变量;(2)分析随机变量服从二项分布;(3)求出参数n和p的值;(4)根据二项分布的均值、方差的计算公式求解.十七、二项分布的性质二项分布概率最大问题的求解思路十八、超几何分布超几何分布:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=eq\f(C\o\al(k,M)C\o\al(n-k,N-M),C\o\al(n,N)),k=m,m+1,m+2,…,r.其中n,N,M∈N*,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.注意点:(1)在超几何分布的模型中,“任取n件”应理解为“不放回地一次取一件,连续取n件”.(2)超几何分布的特点:①不放回抽样;②考察对象分两类;③实质是古典概型.十九、超几何分布的概率超几何分布的概率计算公式给出了求解这类问题的方法,可以直接运用公式求解,但是不能机械地记忆公式,要在理解公式意义的前提下进行记忆.二十、超几何分布的分布列求超几何分布的分布列的步骤二十一、超几何分布的均值求超几何分布均值的步骤(1)验证随机变量服从超几何分布,并确定参数N,M,n的值.(2)根据超几何分布的概率计算公式计算出随机变量取每一个值时的概率.(3)利用均值公式求解.二十二、二项分布与超几何分布的区别与联系不放回抽样服从超几何分布,放回抽样服从二项分布,求均值可利用公式代入计算.二十三、超几何分布的综合应用超几何分布常应用在产品合格问题、球盒取球(两色)问题、男女生选举问题等,这类问题有一个共同特征,就是对每一个个体而言,只研究其相对的两种性质而不涉及其他性质,如产品的合格与不合格、球的红色与非红色、学生的性别等.二十四、正态曲线及其性质1.我们称f(x)=,x∈R,其中μ∈R,σ>0为参数,为正态密度函数,称它的图象为正态密度曲线,简称正态曲线.2.若随机变量X的概率分布密度函数为f(x),则称随机变量X服从正态分布,记为X~N(μ,σ2).特别地,当μ=0,σ=1时,称随机变量X服从标准正态分布.3.若X~N(μ,σ2),则E(X)=μ,D(X)=σ2.4.正态曲线的特点:(1)非负性:对∀x∈R,f(x)>0,它的图象在x轴的上方.(2)定值性:曲线与x轴之间的面积为1.(3)对称性:曲线是单峰的,它关于直线x=μ对称.(4)最大值:曲线在x=μ处达到峰值eq\f(1,σ\r(2π)).(5)当|x|无限增大时,曲线无限接近x轴.(6)当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移,如图①.(7)当μ一定时,曲线的形状由σ确定,σ较小时曲线“瘦高”,表示随机变量X的分布比较集中;σ较大时,曲线“矮胖”,表示随机变量X的分布比较分散,如图②.5.正态分布的几何意义:若X~N(μ,σ2),如图所示,X取值不超过x的概率P(X≤x)为图中区域A的面积,而P(a≤X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论