2024年中考数学压轴题100题含答案_第1页
2024年中考数学压轴题100题含答案_第2页
2024年中考数学压轴题100题含答案_第3页
2024年中考数学压轴题100题含答案_第4页
2024年中考数学压轴题100题含答案_第5页
已阅读5页,还剩105页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年中考数学压轴题100题精选含答案【001】如图,已知抛物线(a≠0)经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点,在轴正半轴上,连结.(1)求该抛物线的解析式;(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿和运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.xxyMCDPQOAB【002】如图16,在Rt△ABC中,∠C=90°,AC=3,AB=5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t>0).(1)当t=2时,AP=,点Q到AC的距离是;(2)在点P从C向A运动的过程中,求△APQ的面积S与t的函数关系式;(不必写出t的取值范围)ACBPQED图16(3)在点EACBPQED图16为直角梯形?若能,求t的值.若不能,请说明理由;(4)当DE经过点C

时,请直接写出t的值.【003】如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E,①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值。【004】如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合.(1)求的面积;(2)求矩形的边与的长;(3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关的函数关系式,并写出相应的的取值范围.AADBEOCFxyy(G)(第4题)【005】如图1,在等腰梯形中,,是的中点,过点作交于点.,.(1)求点到的距离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.AADEBFC图4(备用)ADEBFC图5(备用)ADEBFC图1图2ADEBFCPNM图3ADEBFCPNM(第25题)【006】如图13,二次函数的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为。(1)求该二次函数的关系式;(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.【008】如图所示,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=BC,E是AB的中点,CE⊥BD。求证:BE=AD;求证:AC是线段ED的垂直平分线;△DBC是等腰三角形吗?并说明理由。【009】一次函数的图象分别与轴、轴交于点,与反比例函数的图象相交于点.过点分别作轴,轴,垂足分别为;过点分别作轴,轴,垂足分别为与交于点,连接.(1)若点在反比例函数的图象的同一分支上,如图1,试证明:①;②.(2)若点分别在反比例函数的图象的不同分支上,如图2,则与还相等吗?试证明你的结论.OOCFMDENKyx(第25题图1)OCDKFENyxM(第25题图2)【010】如图,抛物线与轴交于两点,与轴交于C点,且经过点,对称轴是直线,顶点是.(1)求抛物线对应的函数表达式;(2)经过两点作直线与轴交于点,在抛物线上是否存在这样的点,使以点为顶点的四边形为平行四边形?若存在,请求出点的坐标;若不存在,请说明理由;(3)设直线与y轴的交点是,在线段上任取一点(不与重合),经过三点的圆交直线于点,试判断的形状,并说明理由;(4)当是直线上任意一点时,(3)中的结论是否成立?(请直接写出结论).OBxyAOBxyAMC1(第10题图)【011】已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)DFBADFBACE第24题图③FBADCEG第24题图②FBADCEG第24题图①【012】如图,在平面直角坐标系中,半径为1的圆的圆心在坐标原点,且与两坐标轴分别交于四点.抛物线与轴交于点,与直线交于点,且分别与圆相切于点和点.(1)求抛物线的解析式;(2)抛物线的对称轴交轴于点,连结,并延长交圆于,求的长.(3)过点作圆的切线交的延长线于点,判断点是否在抛物线上,说明理由.OOxyNCDEFBMA【013】如图,抛物线经过三点.(1)求出抛物线的解析式;(2)P是抛物线上一动点,过P作轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;(3)在直线AC上方的抛物线上有一点D,使得的面积最大,求出点D的坐标.OOxyABC41(第26题图)【014】在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图).(1)求边在旋转过程中所扫过的面积;(第26题)OABCM(第26题)OABCMN旋转的度数;(3)设的周长为,在旋转正方形的过程中,值是否有变化?请证明你的结论.【015】如图,二次函数的图象经过点D(0,),且顶点C的横坐标为4,该图象在x轴上截得的线段AB的长为6.⑴求二次函数的解析式;⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标;⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.【016】如图9,已知正比例函数和反比例函数的图象都经过点.(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.yyxOCDBA336【017】如图,已知抛物线经过,两点,顶点为.(1)求抛物线的解析式;(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.yyxBAOD(第26题)【018】如图,抛物线经过、两点,与轴交于另一点.(1)求抛物线的解析式;(2)已知点在第一象限的抛物线上,求点关于直线对称的点的坐标;(3)在(2)的条件下,连接,点为抛物线上一点,且,求点的坐标.yyxOABC【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO(1)试比较EO、EC的大小,并说明理由(2)令,请问m是否为定值?若是,请求出m的值;若不是,请说明理由(3)在(2)的条件下,若CO=1,CE=,Q为AE上一点且QF=,抛物线y=mx2+bx+c经过C、Q两点,请求出此抛物线的解析式.(4)在(3)的条件下,若抛物线y=mx2+bx+c与线段AB交于点P,试问在直线BC上是否存在点K,使得以P、B、K为顶点的三角形与△AEF相似?若存在,请求直线KP与y轴的交点T的坐标?若不存在,请说明理由。【020】如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连结AD,以AD为一边且在AD的右侧作正方形ADEF。解答下列问题:(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为,数量关系为。②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动。试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?画出相应图形,并说明理由。(画图不写作法)(3)若AC=4,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值。答案【001】解:(1)抛物线经过点, 1分二次函数的解析式为: 3分(2)为抛物线的顶点过作于,则, 4分xyxyMCDPQOABNEH当时,四边形是平行四边形 5分当时,四边形是直角梯形过作于,则(如果没求出可由求) 6分当时,四边形是等腰梯形综上所述:当、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. 7分(3)由(2)及已知,是等边三角形则过作于,则 8分= 9分当时,的面积最小值为 10分此时AC)BAC)BPQD图3E)F【002】解:(1)1,;(2)如图3,∴.ACBPQED图4由ACBPQED图4得.∴.∴,即.(3)能.ACBPQED图5ACBPQED图5AC(E))BPQD图6GAC(E))BPQD图7G∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ

∽△ABC,得,即.解得.②如图5,当PQ∥BC时,DE⊥BC,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP

∽△ABC,得,即.解得. (4)或.【注:①点P由C向A运动,DE经过点C.方法一、连接QC,作如图6.,.由,得,解得.方法二、由,得,进而可得,得,∴.∴.②点P由A向C运动,DE经过点C,如图7.,】【003】解.(1)点A的坐标为(4,8)…1分将A(4,8)、C(8,0)两点坐标分别代入y=ax2+bx8=16a+4b得0=64a+8b解得a=-,b=4∴抛物线的解析式为:y=-x2+4x…3分(2)①在Rt△APE和Rt△ABC中,tan∠PAE==,即=∴PE=AP=t.PB=8-t.∴点E的坐标为(4+t,8-t).∴点G的纵坐标为:-(4+t)2+4(4+t)=-t2+8.…5分∴EG=-t2+8-(8-t)=-t2+t.∵-<0,∴当t=4时,线段EG最长为2.…7分②共有三个时刻.…8分t1=,t2=,t3=.…11分【004】(1)解:由得点坐标为由得点坐标为∴(2分)由解得∴点的坐标为(3分)∴(4分)(2)解:∵点在上且∴点坐标为(5分)又∵点在上且∴点坐标为(6分)∴(7分)(3)解法一:当时,如图1,矩形与重叠部分为五边形(时,为四边形).过作于,则AADBEORFxyyM(图3)GCADBEOCFxyyG(图1)RMADBEOCFxyyG(图2)RM∴即∴∴即(10分)图1ADEBFCG【005】(1)如图1,过点图1ADEBFCG∵为的中点,∴在中,∴ 2分∴即点到的距离为 3分(2)①当点在线段上运动时,的形状不发生改变.∵∴∵∴,同理 4分如图2,过点作于,∵图2AD图2ADEBFCPNMGH∴∴则在中,∴的周长= 6分②当点在线段上运动时,的形状发生改变,但恒为等边三角形.当时,如图3,作于,则类似①,∴ 7分∵是等边三角形,∴此时, 8分图3ADEB图3ADEBFCPNM图4ADEBFCPMN图5ADEBF(P)CMNGGRG此时,当时,如图5,则又∴因此点与重合,为直角三角形.∴此时,综上所述,当或4或时,为等腰三角形.【006】解:(1)OC=1,所以,q=-1,又由面积知0.5OC×AB=,得AB=,设A(a,0),B(b,0)AB=ba==,解得p=,但p<0,所以p=。所以解析式为:(2)令y=0,解方程得,得,所以A(,0),B(2,0),在直角三角形AOC中可求得AC=,同样可求得BC=,显然AC2+BC2=AB2,得△ABC是直角三角形。AB为斜边,所以外接圆的直径为AB=,所以。(3)存在,AC⊥BC,①若以AC为底边,则BD//AC,易求AC的解析式为y=-2x-1,可设BD的解析式为y=-2x+b,把B(2,0)代入得BD解析式为y=-2x+4,解方程组得D(,9)②若以BC为底边,则BC//AD,易求BC的解析式为y=0.5x-1,可设AD的解析式为y=0.5x+b,把A(,0)代入得AD解析式为y=0.5x+0.25,解方程组得D()综上,所以存在两点:(,9)或()。【007】【008】证明:(1)∵∠ABC=90°,BD⊥EC,∴∠1与∠3互余,∠2与∠3互余,∴∠1=∠2…………………1分∵∠ABC=∠DAB=90°,AB=AC∴△BAD≌△CBE…………2分∴AD=BE……………………3分(2)∵E是AB中点,∴EB=EA由(1)AD=BE得:AE=AD……………5分∵AD∥BC∴∠7=∠ACB=45°∵∠6=45°∴∠6=∠7由等腰三角形的性质,得:EM=MD,AM⊥DE。即,AC是线段ED的垂直平分线。……7分(3)△DBC是等腰三角(CD=BD)……8分理由如下:由(2)得:CD=CE由(1)得:CE=BD∴CD=BD∴△DBC是等腰三角形。……………10分【009】OCFMDENOCFMDENKyx图1四边形为矩形.轴,轴,四边形为矩形.轴,轴,四边形均为矩形. 1分,,..,,. 2分②由(1)知... 4分,. 5分.. 6分轴,四边形是平行四边形.. 7分同理.. 8分(2)与仍然相等. 9分,OCDOCDKFENyxM图2又,. 10分..,... 11分轴,四边形是平行四边形..同理.. 12分【010】yxEDNyxEDNOACMPN1F(第26题图)解得抛物线对应的函数表达式为. 3分(2)存在.在中,令,得.令,得,.,,.又,顶点. 5分容易求得直线的表达式是.在中,令,得.,. 6分在中,令,得..,四边形为平行四边形,此时. 8分(3)是等腰直角三角形.理由:在中,令,得,令,得.直线与坐标轴的交点是,.,. 9分又点,.. 10分由图知,. 11分,且.是等腰直角三角形. 12分(4)当点是直线上任意一点时,(3)中的结论成立. 14分【011】解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴CG=FD.………1分同理,在Rt△DEF中,EG=FD.…………2分∴CG=EG.…3分(2)(1)中结论仍然成立,即EG=CG.…………4分证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴AG=CG.………5分在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴MG=NG在矩形AENM中,AM=EN.……………6分在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG.∴AG=EG.∴EG=CG.……………8分证法二:延长CG至M,使MG=CG,连接MF,ME,EC,……4分在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG.∴MF=CD,∠FMG=∠DCG.∴MF∥CD∥AB.………5分∴在Rt△MFE与Rt△CBE中,∵MF=CB,EF=BE,∴△MFE≌△CBE.∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°.∴△MEC为直角三角形.∵MG=CG,∴EG=MC.………8分(3)(1)中的结论仍然成立,即EG=CG.其他的结论还有:EG⊥CG.……10分【012】解:(1)圆心在坐标原点,圆的半径为1,点的坐标分别为抛物线与直线交于点,且分别与圆相切于点和点,.点在抛物线上,将的坐标代入,得:解之,得:抛物线的解析式为:. 4分(2)抛物线的对称轴为,OxyNCOxyNCDEFBMAP连结,,,又,,. 8分(3)点在抛物线上. 9分设过点的直线为:,将点的坐标代入,得:,直线为:. 10分过点作圆的切线与轴平行,点的纵坐标为,将代入,得:.点的坐标为,当时,,所以,点在抛物线上. 12分【013】解:(1)该抛物线过点,可设该抛物线的解析式为.将,代入,得解得此抛物线的解析式为. (3分)(2)存在. (4分)如图,设点的横坐标为,OxyABCOxyABC41(第26题图)DPME当时,,.又,①当时,,即.解得(舍去),. (6分)②当时,,即.解得,(均不合题意,舍去)当时,. (7分)类似地可求出当时,. (8分)当时,.综上所述,符合条件的点为或或. (9分)(3)如图,设点的横坐标为,则点的纵坐标为.过作轴的平行线交于.由题意可求得直线的解析式为. (10分)点的坐标为.. (11分).当时,面积最大.. (13分)【014】(1)解:∵点第一次落在直线上时停止旋转,∴旋转了.∴在旋转过程中所扫过的面积为.……………4分(2)解:∵∥,∴,.∴.∴.又∵,∴.又∵,,∴.∴.∴.∴旋转过程中,当和平行时,正方形旋转的度数为.……………8分(3)答:值无变化.证明:延长交轴于点,则,,∴.又∵,.∴.∴.(第26题)OABCMN又∵,(第26题)OABCMN∴.∴,∴.∴在旋转正方形的过程中,值无变化.……………12分【015】⑴设二次函数的解析式为:y=a(x-h)2+k∵顶点C的横坐标为4,且过点(0,)∴y=a(x-4)2+k………………①又∵对称轴为直线x=4,图象在x轴上截得的线段长为6∴A(1,0),B(7,0)∴0=9a+k………………②由①②解得a=,k=∴二次函数的解析式为:y=(x-4)2-⑵∵点A、B关于直线x=4对称∴PA=PB∴PA+PD=PB+PD≥DB∴当点P在线段DB上时PA+PD取得最小值∴DB与对称轴的交点即为所求点P设直线x=4与x轴交于点M∵PM∥OD,∴∠BPM=∠BDO,又∠PBM=∠DBO∴△BPM∽△BDO∴∴∴点P的坐标为(4,)⑶由⑴知点C(4,),又∵AM=3,∴在Rt△AMC中,cot∠ACM=,∴∠ACM=60o,∵AC=BC,∴∠ACB=120o①当点Q在x轴上方时,过Q作QN⊥x轴于N如果AB=BQ,由△ABC∽△ABQ有BQ=6,∠ABQ=120o,则∠QBN=60o∴QN=3,BN=3,ON=10,此时点Q(10,),如果AB=AQ,由对称性知Q(-2,)②当点Q在x轴下方时,△QAB就是△ACB,此时点Q的坐标是(4,),经检验,点(10,)与(-2,)都在抛物线上综上所述,存在这样的点Q,使△QAB∽△ABC点Q的坐标为(10,)或(-2,)或(4,).【016】解:(1)设正比例函数的解析式为,因为的图象过点,所以,解得.这个正比例函数的解析式为. (1分)设反比例函数的解析式为.因为的图象过点,所以,解得.这个反比例函数的解析式为. (2分)(2)因为点在的图象上,所以,则点. (3分)设一次函数解析式为.因为的图象是由平移得到的,所以,即.又因为的图象过点,所以,解得,一次函数的解析式为. (4分)(3)因为的图象交轴于点,所以的坐标为.设二次函数的解析式为.因为的图象过点、、和,所以 (5分)解得这个二次函数的解析式为. (6分)(4)交轴于点,点的坐标是,yxOyxOCDBA336E.假设存在点,使.四边形的顶点只能在轴上方,,.,.在二次函数的图象上,.解得或.当时,点与点重合,这时不是四边形,故舍去,点的坐标为. (8分)【017】解:(1)已知抛物线经过,解得所求抛物线的解析式为. 2分(2),,可得旋转后点的坐标为 3分当时,由得,可知抛物线过点将原抛物线沿轴向下平移1个单位后过点.平移后的抛物线解析式为:. 5分(3)点在上,可设点坐标为将配方得,其对称轴为. 6分yxCBAONyxCBAONDB1D1图①此时yxCBAODyxCBAODB1D1图②N②当时,如图②同理可得此时点的坐标为.综上,点的坐标为或. 10分【018】解:(1)抛物线经过,两点,解得抛物线的解析式为.yxOABCDEyxOABCDE即,或.点在第一象限,点的坐标为.由(1)知.设点关于直线的对称点为点.,,且,,点在轴上,且.,.即点关于直线对称的点的坐标为(0,1).(3)方法一:作于,于.yxOAyxOABCDEPF.,且.,.,,,.设,则,,.点在抛物线上,,(舍去)或,.yxOABCDPQGH方法二:过点作的垂线交直线于点,过点作轴于.过点作于.yxOABCDPQGH.,又,.,,.由(2)知,.,直线的解析式为.解方程组得点的坐标为.【019】(1)EO>EC,理由如下:由折叠知,EO=EF,在Rt△EFC中,EF为斜边,∴EF>EC,故EO>EC…2分(2)m为定值∵S四边形CFGH=CF2=EF2-EC2=EO2-EC2=(EO+EC)(EO―EC)=CO·(EO―EC)S四边形CMNO=CM·CO=|CE―EO|·CO=(EO―EC)·CO∴……………………4分(3)∵CO=1,∴EF=EO=∴cos∠FEC=∴∠FEC=60°,∴∴△EFQ为等边三角形,…………5分作QI⊥EO于I,EI=,IQ=∴IO=∴Q点坐标为……6分∵抛物线y=mx2+bx+c过点C(0,1),Q,m=1∴可求得,c=1∴抛物线解析式为……7分(4)由(3),当时,<AB∴P点坐标为…8分∴BP=AO方法1:若△PBK与△AEF相似,而△AEF≌△AEO,则分情况如下:①时,∴K点坐标为或②时,∴K点坐标为或…………10分故直线KP与y轴交点T的坐标为…………12分方法2:若△BPK与△AEF相似,由(3)得:∠BPK=30°或60°,过P作PR⊥y轴于R,则∠RTP=60°或30°①当∠RTP=30°时,②当∠RTP=60°时,∴……………12分【020】解:(1)①CF⊥BD,CF=BD②成立,理由如下:∵∠FAD=∠BAC=90°∴∠BAD=∠CAF又BA=CA,AD=AF∴△BAD≌△CAF∴CF=BD∠ACF=∠ACB=45°∴∠BCF=90°∴CF⊥BD……(1分)(2)当∠ACB=45°时可得CF⊥BC,理由如下:如图:过点A作AC的垂线与CB所在直线交于G则∵∠ACB=45°∴AG=AC∠AGC=∠ACG=45°∵AG=ACAD=AF………(1分)∴△GAD≌△CAF(SAS)∴∠ACF=∠AGD=45°∴∠GCF=∠GCA+∠ACF=90°∴CF⊥BC…………(2分)(3)如图:作AQBC于Q∵∠ACB=45°AC=4∴CQ=AQ=4∵∠PCD=∠ADP=90°∴∠ADQ+∠CDP=∠CDP+∠CPD=90°∴△ADQ∽△DPC…(1分)∴=设CD为x(0<x<3)则DQ=CQ-CD=4-x则=…………(1分)∴PC=(-x2+4x)=-(x-2)2+1≥1当x=2时,PC最长,此时PC=1………(1分)第二部分1.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.(1)当BP=时,△MBP~△DCP;(2)当⊙P与正方形ABCD的边相切时,求BP的长;(3)设⊙P的半径为x,请直接写出正方形ABCD中恰好有两个顶点在圆内的x的取值范围.2.如图,已知抛物线与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且,.(1)求抛物线的解析式;(2)已知点M为抛物线上一动点,且在第三象限,顺次连接点B、M、C,求面积的最大值;(3)在(2)中面积最大的条件下,过点M作直线平行于y轴,在这条直线上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.3.已知抛物线的顶点为点.(1)求证:不论为何实数,该抛物线与轴总有两个不同的交点;(2)若抛物线的对称轴为直线,求的值和点坐标;(3)如图,直线与(2)中的抛物线并于两点,并与它的对称轴交于点,直线交直线于点,交抛物线于点.求当为何值时,以为顶点的四边形为平行四边形.4.如图,在四边形ABCD中,∠B=90°,AD//BC,AD=16,BC=21,CD=13.(1)求直线AD和BC之间的距离;(2)动点P从点B出发,沿射线BC以每秒2个单位长度的速度运动,动点Q从点A出发,在线段AD上以每秒1个单位长度的速度运动,点P、Q同时出发,当点Q运动到点D时,两点同时停止运动,设运动时间为t秒.试求当t为何值时,以P、Q、D、C为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P,使△PQD为等腰三角形?若存在,请直接写出相应的t值,若不存在,请说明理由.5.如图,在菱形中,,,过点作,垂足为,,垂足为.(1)连接,用等式表示线段与的数量关系,并说明理由;(2)连接,过点作,垂足为,求的长(用含的代数式表示);(3)延长线段到,延长线段到,且,连接,,.①判断的形状,并说明理由;②若,求的值.6.问题提出(1)如图①,在中,,求的面积.问题探究(2)如图②,半圆的直径,是半圆的中点,点在上,且,点是上的动点,试求的最小值.问题解决(3)如图③,扇形的半径为在选点,在边上选点,在边上选点,求的长度的最小值.7.如图,在中,,,,点为中点.动点从点出发,沿方向以每秒个单位长度的速度向终点运动,点关于点对称点为点,以为边向上作正方形.设点的运动时间为秒.(1)当_______秒时,点落在边上.(2)设正方形与重叠部分面积为,当点在内部时,求关于的函数关系式.(3)当正方形的对角线所在直线将的分为面积相等的两部分时,直接写出的值.8.对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M于点N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(0,),点P在线段DE上运动(点P可以与点D,E重合),连接OP,CP.①线段OP的最小值为_______,最大值为_______;线段CP的取值范直范围是_____;②在点O,点C中,点____________与线段DE满足限距关系;(2)如图2,⊙O的半径为1,直线(b>0)与x轴、y轴分别交于点F,G.若线段FG与⊙O满足限距关系,求b的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,1为半径作圆得到⊙H和K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.9.如图,在平面直角坐标系中,点,,抛物线交轴正半轴于点,连结,.(1)求点的坐标;(2)求直线的表达式;(3)设抛物线分别交边,延长线于点,.①若,求抛物线表达式;②若与相似,则的值为.(直接写出答案)10.如图,射线AM上有一点B,AB=6.点C是射线AM上异于B的一点,过C作CD⊥AM,且CD=AC.过D点作DE⊥AD,交射线AM于E.在射线CD取点F,使得CF=CB,连接AF并延长,交DE于点G.设AC=3x.(1)当C在B点右侧时,求AD、DF的长.(用关于x的代数式表示)(2)当x为何值时,△AFD是等腰三角形.(3)若将△DFG沿FG翻折,恰使点D对应点落在射线AM上,连接,.此时x的值为(直接写出答案)11.已知:如图,四边形,,,,,,动点从点开始沿边匀速运动,运动速度为,动点从点开始沿边匀速运动,运动速度为.点和点同时出发,为四边形的对角线的交点,连接并延长交于,连接.设运动的时间为,.(1)当为何值时,?(2)设五边形的面积为,求与之间的函数关系式;(3)在运动过程中,是否存在某一时刻,使的面积等于五边形面积的?若存在,求出的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻,使点在的垂直平分线上?若存在,求出的值;若不存在,请说明理由.12.如图1,平面直角坐标系xoy中,A(-4,3),反比例函数的图象分别交矩形ABOC的两边AC,BC于E,F(E,F不与A重合),沿着EF将矩形ABOC折叠使A,D重合.(1)①如图2,当点D恰好在矩形ABOC的对角线BC上时,求CE的长;②若折叠后点D落在矩形ABOC内(不包括边界),求线段CE长度的取值范围.(2)若折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.13.如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.(1)求证:DE=BO;(2)如图2,当点D恰好落在BC上时.①求点E的坐标;②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.14.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,(1)如图①所示.当∠CNG=42°,求∠HMC的度数.(写出证明过程)(2)将直尺向下平移至图2位置,使直尺的边缘通过点C,交AB于点P,直尺另一侧与三角形交于N、Q两点。请直接写出∠PQF、∠A、∠ACE之间的关系.15.已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.(1)求A,B,C三点坐标;(2)如图1,点D为AC中点,点E在线段BD上,且BE=2DE,连接CE并延长交抛物线于点M,求点M坐标;(3)如图2,将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,点P为△ACG内一点,连接PA、PC、PG,分别以AP、AG为边,在它们的左侧作等边△APR和等边△AGQ,求PA+PC+PG的最小值,并求当PA+PC+PG取得最小值时点P的坐标(直接写出结果即可).16.已知:AB为⊙O的直径,点C为弧AB的中点,点D为⊙O上一点,连接CD,交AB于点M,AE为∠DAM的平分线,交CD于点E.(1)如图1,连接BE,若∠ACD=22°,求∠MBE的度数;(2)如图2,连接DO并延长,交⊙O于点F,连接AF,交CD于点N.①求证:DM2+CN2=CM2;②如图3,当AD=1,AB=时,请直接写出线段ME的长.17.如图,平面直角坐标系中,抛物线与轴交于B、C两点(点B在点C右侧),与轴交于点,连接,.(1)求抛物线的解析式;(2)点P在第二象限的抛物线上,连接PB交轴于D,取PB的中点E,过点E作轴于点H,连接DH,设点P的横坐标为.的面积为,求与的函数关系式(不要求写出自变量的取值范围);(3)在(2)的条件下,作轴于F,连接CP、CD,,点为上一点,连接交轴于点,连接BF并延长交抛物线于点.,在射线CS上取点Q.连接QF,,求直线的解析式.18.定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.(1)当m=0时①一次函数y=x﹣1关于点P的相关函数为;②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m=;(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.19.如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,则AF=_____.20.如图,在平面直角坐标系中,已知的直角顶点,斜边在轴上,且点的坐标为,点是的中点,点是边上的一个动点,抛物线过,,三点.(1)当时,①求抛物线的解析式;②平行于对称轴的直线与轴,,分别交于点,,,若以点,,为顶点的三角形与相似,求点的值.(2)以为等腰三角形顶角顶点,为腰构造等腰,且点落在轴上.若在轴上满足条件的点有且只有一个时,请直接写出点的坐标.21.如图1,D是等边△ABC外一点,且AD=AC,连接BD,∠CAD的角平分交BD于E.(1)求证:∠ABD=∠D;(2)求∠AEB的度数;(3)△ABC的中线AF交BD于G(如图2),若BG=DE,求的值.22.在平面直角坐标系xOy中,点A、B为反比例函数的图像上两点,A点的横坐标与B点的纵坐标均为1,将的图像绕原点O顺时针旋转90°,A点的对应点为A’,B点的对应点为B’.(1)点A’的坐标是,点B’的坐标是;(2)在x轴上取一点P,使得PA+PB的值最小,直接写出点P的坐标.此时在反比例函数的图像上是否存在一点Q,使△A’B’Q的面积与△PAB的面积相等,若存在,求出点Q的横坐标;若不存在,请说明理由;(3)连接AB’,动点M从A点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB’为等腰直角三角形的t值.若存在,求出t的值;若不存在,说明理由.23.(操作发现)如图1,为等腰直角三角形,,先将三角板的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于),旋转后三角板的一直角边与交于点.在三角板另一直角边上取一点,使,线段上取点,使,连接,.(1)请求出的度数?(2)与相等吗?请说明理由;(类比探究)如图2,为等边三角形,先将三角板中的角与重合,再将三角板绕点按顺时针方向旋转(旋转角大于且小于).旋转后三角板的一直角边与交于点.在三角板斜边上取一点,使,线段上取点,使,连接,.(3)直接写出_________度;(4)若,,求线段的长度.24.如图,平行四边形ABCD中,AB⊥AC,AB=2,AC=4.对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转°(0°<<180°),分别交直线BC、AD于点E、F.(1)当=_____°时,四边形ABEF是平行四边形;(2)在旋转的过程中,从A、B、C、D、E、F中任意4个点为顶点构造四边形,①当=_______°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长.25.如图,抛物线与x轴交于点A(-2,0),交y轴于点B(0,).直线过点A与y轴交于点C,与抛物线的另一个交点是D.(1)求抛物线与直线的解析式;(2)点P是抛物线上A、D间的一个动点,过P点作PM∥CE交线段AD于M点.①过D点作DE⊥y轴于点E,问是否存在P点使得四边形PMEC为平行四边形?若存在,请求出点P的坐标;若不存在,请说明理由;②作PN⊥AD于点N,设△PMN的周长为m,点P的横坐标为x,求m关于x的函数关系式,并求出m的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题1.B解析:(1);(2)3或;(3)【解析】【分析】(1)设BP=a,则PC=8-a,由△MBP~△DCP知,代入计算可得;(2)分别求出⊙P与边CD相切时和⊙P与边AD相切时BP的长即可得;(3)①当PM=5时,⊙P经过点M,点C;②当⊙P经过点M、点D时,由PC2+DC2=BM2+PB2,可求得BP=7,继而知.据此可得答案.【详解】(1)设BP=a,则PC=8-a,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴,即,解得,故答案为:.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2,∴x=5,∴PC=5,BP=BC-PC=8-5=3.如图2,当⊙P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,.综上所述,BP的长为3或.(3)如图1,当PM=5时,⊙P经过点M,点C;如图3,当⊙P经过点M、点D时,∵PC2+DC2=BM2+PB2,∴42+BP2=(8-BP)2+82,∴BP=7,∴.综上,.【点睛】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.2.B解析:(1);(2)4;(3)存在,Q的坐标为或【解析】【分析】根据题意将、的坐标代入抛物线表达式,即可求解;由题意设点M的坐标为,则点,,即可求解;由题意和如图所示可知,,在中,,,,进行分析计算即可求解.【详解】解:将、的坐标代入抛物线表达式得:,解得:,则抛物线的解析式为:;过点M作y轴的平行线,交直线BC于点K,将点B、C的坐标代入一次函数表达式:得:,解得:,则直线BC的表达式为:,设点M的坐标为,则点,,,有最大值,当时,最大值为4,点M的坐标为;如图所示,存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,切点为N,过点M作直线平行于y轴,交直线AC于点H,点M坐标为,设:点Q坐标为,点A、C的坐标为、,,轴,,,则,将点A、C的坐标代入一次函数表达式:得:,则直线AC的表达式为:,则点,在中,,,,解得:或,即点Q的坐标为或.【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是,核心是通过画图确定圆的位置,本题综合性较强.3.(1)详见解析;(2),点坐标为;(3)或或时,可使得为顶点的四边形是平行四边形.【解析】【分析】(1)从的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴来求的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点的坐标;(3)根据平行四边形的性质得到:.需要分类讨论:①当四边形是平行四边形,,通过解该方程可以求得的值;②当四边形是平行四边形,,通过解该方程可以求得的值.【详解】解:(1),∵不论为何实数,总有,,∴无论为何实数,关于的一元二次方程总有两个不相等的实数根,∴无论为何实数,抛物线与轴总有两个不同的交点.(2)抛物线的对称轴为直线,,即,此时,抛物线的解析式为,∴顶点坐标为;(3)为顶点的四边形是平行四边形,四边形是平行四边形(直线在抛物线的上方)或四边形(直线在抛物线的下方),如图所示,由已知,,,,①当四边形是平行四边形,,整理得,,解得(不合题意,舍去),;②当四边形是平行四边形,,整理得,解得,,综上,或或时,可使得为顶点的四边形是平行四边形.【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.4.A解析:(1)12;(2)5s或;(3)s或s或s【解析】【分析】(1)AD与BC之间的距离即AB的长,如下图,过点D作BC的垂线,交BC于点E,在RtDEC中可求得DE的长,即AB的长,即AD与BC间的距离;(2)四边形QDCP为平行四边形,只需QD=CP即可;(3)存在3大类情况,情况一:QP=PD,情况二:PD=QD,情况三:QP=QD,而每大类中,点P存在2种情况,一种为点P还未到达点C,另一种为点P从点C处返回.【详解】(1)如下图,过点D作BC的垂线,交BC于点E∵∠B=90°,AD∥BC∴AB⊥BC,AB⊥AD∴AB的长即为AD与BC之间的距离∵AD=16,BC=21,∴EC=5∵DC=13∴在RtDEC中,DE=12同理,DE的长也是AD与BC之间的距离∴AD与BC之间的距离为12(2)∵AD∥BC∴只需QD=PC,则四边形QDCP是平行四边形QD=16-t,PC=21-2t或PC=2t-21∴16-t=21-2t或16-t=2t-21解得:t=5s或t=(3)情况一:QP=PD图形如下,过点P作AD的垂线,交AD于点F∵PQ=PD,PF⊥QD,∴QF=FD∵AF∥BP,AB∥FP,∠B=90°∴四边形ABPF是矩形,∴AF=BP由题意得:AQ=t,则QD=16-t,QF=8-,AF=8+BP=2t或BP=21-(2t-21)=42-2t∵AF=BP∴8+2t或8+42-2t解得:t=或t=情况二:PD=QD,图形如下,过点P作AD的垂线,交AD于点F同理QD=16-t,PF=AB=12BP=2t或21-(2t-21)=42-2t则FD=AD-AF=AD-BP=16-2t或FD=16-(42-2t)=2t-26∴在RtPFD中,或∵PD=QD,∴∴或解得:2个方程都无解情况三:QP=QD,图形如下,过点P作AD的垂线,交AD于点F同理:QD=16-t,FP=12BP=2t或BP=42-2tQF=AF-AQ=BP-AQ=2t-t=t或QF=42-2t-t=42-3t在RtQFP中,或∵PQ=QD,∴∴或第一个方程解得:t=,第二个方程解得:无解综上得:t=或或【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q运动的轨迹,得出BP的长度.5.E解析:(1),见解析;(2);(3)①是等边三角形,见解析;②【解析】【分析】(1)连接EF,AC,由菱形的性质,可证,然后得到为等边三角形,由解直角三角形得到,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF的长度,然后得到BF的长度,然后由相似三角形的性质,得到,即可求出答案;(3)①由等边三角形的性质,先证明,然后得到,然后得到,即可得到答案;②由三角形的面积公式得到,然后得到为等腰直角三角形,再由解直角三角形的性质,即可求出答案.【详解】解:(1);理由:∵四边形是菱形,,,,∵,垂足为,,垂足为,,,,为等边三角形,.连接,在中,,(2)如图:∵四边形是菱形,,是等边三角形,.,垂足为,在中,,在中,,,垂足为,,,,(3)如图:①是等边三角形.理由:连接.,为等边三角形,,.,,,又,,.,,为等边三角形;②为等边三角形,,.,,,,,为等腰直角三角形,.过点作,垂足为.在中,,,在中,,.又,;【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.6.B解析:(1)12;(2);(3).【解析】【分析】(1)如图1中,过点作,交延长线于点,通过构造直角三角形,求出BD利用三角形面积公式求解即可.(2)如图示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,确定点P的位置,利用勾股定理与矩形的性质求出CQ的长度即为答案.(3)解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,通过轴对称性质的转化,最终确定最小值转化为SN的长.【详解】(1)如解图1所示,过点作,交延长线于点,,,,交延长线于点,为等腰直角三角形,且,,在中,,,即,,,解得:,,.(2)如解图2所示,作点关于的对称点,交于点,连接,交于点,连接、、,过点作,交延长线于点,关于的对称点,交于点,,,点为上的动点,,当点处于解图2中的位置,取最小值,且最小值为的长度,点为半圆的中点,,,,,,在中,由作图知,,且,,,由作图知,四边形为矩形,,,,的最小值为.(3)如解图3所示,在上这一点作点关于的对称点,作点关于的对称点,连接,交于点,交于点,连接,点关于的对称点,点关于的对称点,连接,交于点,交于点,,,,,.,,为上的点,为上的点,当点处于解图3的位置时,的长度取最小值,最小值为的长度,,,.扇形的半径为,,在中,,的长度的最小值为.【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.7.A解析:(1);(2);(3)的值为或.【解析】【分析】(1)如下图,根据,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t,AP=7-t∴PN=PQ=2t∵∴,即解得:t=(2)①如图2,图2四边形是正方形,,,,即解得,故当≤时,;②如图3,图3,,,,则,,,则;综上,.(3)如下图,过点C作AB的垂线,交AB于点G图4∵∴设CG=4x,则AG=3x∵∠B=45°∴△CBG是等腰直角三角形∴GB=GC=4x∵AB=14∴3x+4x=14,解得:x=2∴∴情况一:PM所在的直线平分△ABC的面积,如下图,PM与BC交于点E图5则∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵∴PE=PB=∴PB=∵PB=AB-PA=14-(7-t)=7+t∴7+t=t=情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴,解得:y=∵AQ=AB-QB=14-(7-t)=7+t∴7+t=7解得:t=7∴综上得:的值为或.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.8.C解析:(1)①,,,②O;(2);(3)0<r≤3.【解析】【分析】(1)①根据垂线段最短以及已知条件,确定OP,CP的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线与x轴、y轴分别交于点F,G(0,b),分三种情形:①线段FG在⊙O内部,②线段FG与⊙O有交点,③线段FG与⊙O没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,根据⊙H和⊙K都满足限距关系,构建不等式求解即可.【详解】(1)①如图1中,∵D(-1,0),E(0,),∴OD=1,,∴,∴∠EDO=60°,当OP⊥DE时,,此时OP的值最小,当点P与E重合时,OP的值最大,最大值为,当CP⊥DE时,CP的值最小,最小值,当点P与D或E重合时,PC的值最大,最大值为2,故答案为:,,.②根据限距关系的定义可知,线段DE上存在两点M,N,满足OM=2ON,故点O与线段DE满足限距关系.故答案为O.(2)直线与x轴、y轴分别交于点F,G(0,b),当0<b<1时,线段FG在⊙O内部,与⊙O无公共点,此时⊙O上的点到线段FG的最小距离为1-b,最大距离为1+b,∵线段FG与⊙O满足限距关系,∴1+b≥2(1-b),解得,∴b的取值范围为.当1≤b≤2时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当b>2时,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为,最大距离为b+1,∵线段FG与⊙O满足限距关系,∴,而总成立,∴b>2时,线段FG与⊙O满足限距关系,综上所述,b的取值范围为.(3)如图3中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H和⊙K都满足限距关系,∴2r+2≥2(2r-2),解得r≤3,故r的取值范围为0<r≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.9.C解析:(1)点的坐标为;(2);(3)①;②.【解析】【分析】(1)求得对称轴,由对称性可知C点坐标;(2)利用待定系数法求解可得;(3)①由AE=3AO的关系,建立K型模型相似,求得点E坐标代入解析式可得;②若△CDB与△BOA相似,则∠OAB=∠CDB=90°,由相似关系可得点D坐标,代入解析式y=ax2-2ax可得a值.【详解】解:(1)把代入,得,解得:,或.∵点在轴正半轴上,∴点的坐标为.(2)设直线表达式为,把点,分别代入,得,解得,∴直线的表达式为:.(3)①作轴于点,于点(如图),∵,,,∴.∴.由,得,∴,,∴点坐标为.把代入,得,解得:.∴.②若△CDB与△BOA相似,如图,作DG⊥BC,∴,∠OAB=∠CDB=90°,∴,∴,,∵,∴,∴,解得:,∴点D的坐标为:(,),把点D代入,即解得:;故答案为:.【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.10.A解析:(1),;(2)△ADF为等腰三角形,x的取值可以是,,;(3)4或【解析】【分析】(1)由已知条件可得:CD=4x,根据勾股定理得:AD=5x,由AB=6且C在B点右侧,可以依次表示BC、CF、DF的长;(2)分两种情况:①当C在B点的右侧时,AF=DF,②当C在线段AB上时,又分两种情况:i)当CF<CD时,如图3,ii)当CF>CD时,如图4,由AF=DF,作等腰三角形的高线FN,由等腰三角形三线合一得:AN=ND=2.5x,利用同角的三角函数列比例式可求得x的值;(3)由翻折性质得到DG=,,从而证出,从而推出∠FAC=∠DAG,即AF平分∠DAC,过F作FN⊥AD于N,分两种情况:当C在AB的延长线上时,当C在AB边上时,根据可列出关于x的比例式,即可求解.【详解】⑴∵CD=AC,AC=3x,∴CD=4x,∵CD⊥AM,∴∠ACD=90°,由勾股定理得:AD=5x,∵AB=6,C在B点右侧,∴BC=AC-AB=3x-6,∵BC=FC=3x-6,∴DF=CD-FC=4x-(3x-6)=x+6;(2)分两种情况:①当C在B点的右侧时,∴AC>AB,∴F必在线段CD上,∵∠ACD=90°,∴∠AFD是钝角,若△ADF为等腰三角形,只可能AF=DF,过F作FN⊥AD于N,如图,∴AN=ND=2.5x,∴,即,解得,;②当C在线段AB上时,同理可知若△ADF为等腰三角形,只可能AF=DF,i)当CF<CD时,过F作FN⊥AD于N,如图,x的取值可以是,,;∵AB=6,AC=3x,∴BC=CF=6-3x,∴DF=4x-(6-3x)=7x-6,∵,∴,解得;ii)当CF>CD时,如图4,BC=CF=6-3x,∴FD=AD=6-3x-4x=6-7x,则6-7x=5x,x=,综上所述,x的取值可以是,,;(3)∵△DFG沿FG翻折得到∴DG=,又∵AG=AG,∴∴∠FAC=∠DAG,即AF平分∠DAC,如图,当C在AB的延长线上时,过F作FN⊥AD于N,FN=FC=3x-6,DF=x+6,,解得:x=4;当C在AB边上时,如图,∵FN=FC=6-3x,DF=7x-6,∴,解得;综上所述,x的值是4或.【点睛】本题是四边形的综合题,考查了平行四边形、菱形的性质和判定、等腰三角形的性质和判定、同角的三角函数以及动点问题,采用分类讨论的思想,并参考数形结合解决问题.11.A解析:(1);(2);(3)不存在,理由详见解析;(4)存在,,.【解析】【分析】(1)如下图,根据Rt△ADH求得AD的长,在利用QP∥DB得到t的值;(2)先利用,得到AP、BP、DM,然后用割补法求面积;(3)假设存在,使得的面积等于五边形面积的,验证t的值是否在取值范围内;(4)如下图,分别在Rt△EMQ和Rt△QFP中求得QM和QP的长,令它们相等求得t.【详解】(1)如下图,过点D作AB的垂线交AB于点H∵DC=8,AB=16,CB=6,∴AH=8,DH=6∴在Rt△DHA中,设则∴∵QP∥DB,即解得:.(2)∵DC∥AB∴∠ABO=∠CDO,∠OAB=∠DCO∴∴∵,∴∴四.(3)∵四又∵的面积等于五边形面积的∴四,即:解得:,,不存在.(4)如下图,延长CD,过点Q作AB的垂线,交CD于点E,AB与点F∵∠QAF=QDE,∠AHD=∠QED∴△AHD∽△DEQ同理,△ADH∽△AQF∵AD=10,AH=8又∵QD=t∴EQ=,ED=∵AQ=10-t∴AF=,FQ=∴QM=QP=∵点Q是MP的垂直平分线,∴QM=QP,即:化简得:解得:,.【点睛】本题主要考查相似和勾股定理,在第(3)问中,解题关键是根据垂直平分线的性质,得到QM=QP,然后求解计算.12.E解析:(1)①EC=2;②;(2)点D的坐标为或【解析】【分析】(1)①根据A(-4,3)和反比例函数图象上点的特征可得E、F的坐标,从而可表示出AE、AF并求得,从而证得△AEF∽△ACB,利用相似三角形的性质的折叠的性质可推出,即可求得结果;②当D在BO上时,由折叠的性质和同角的余角相等证得△AEF∽△BAD,设AF=x,利用勾股定理可列出方程,解之得AF的长,进而求出AE、CE的长,即可得出CE的取值范围;(2)由△ABD是等腰三角形,可得或,分情况进行求解即可.【详解】解:(1)①由题意得,,∵,则,,∴,,∴,∵由A(-4,3)得:,∴,∴,又∵∠A=∠A,∴△AEF∽△ACB,∴∠AEF=∠ACB,∴EF∥CB,如图2,连接AD交EF于点H,由折叠的性质得:AH=DH,∵D在BC上,∴,则,∴;②由折叠得EF垂直平分AD,∴,则,又∵,∴,如图,当D落在BO上时,∵,∴△AEF∽△BAD,∴,则,∴,设AF=x,则FB=3-x,FD=AF=x,在Rt△BDF中,由勾股定理得:,即,解得:,∴,∴,∴,∴,即折叠后点D落在矩形ABOC内(不包括边界),CE的取值范围为;(2)∵△ABD是等腰三角形,显然,∴或,①当时,,由(1)得:,∴,如图,过点D作轴分别交AB、y轴于点M、N,则,,∴,,∴△AEF∽△MBD,∴,则,∴,∴,∴点D的坐标为;②当时,如图,过点D作轴分别交AB、y轴于点M、N,则,,,∴,由(1)得,∴△AEF∽△MAD,∴,则,设,则,在Rt△MAD中,由勾股定理得:,即,解得:,∴,,∴,,∴点D的坐标为;综上所述,若折叠后,△ABD是等腰三角形,点D的坐标为或.【点睛】本题考查了反比例函数与几何综合、相似三角形的判定与性质综合、等腰三角形的判定与性质,解题的关系是熟悉反比例函数图象上点的特征和熟练掌握相似三角形的判定与性质.13.E解析:(1)见解析;(2)①E(6,9);②存在,点P的坐标为(-3,0)或(9,0);③不变化,MH+MG=9【解析】【分析】(1)根据等边三角形的性质得到BC=CE,OC=CD,∠OCD=∠BCE=60°,求得∠OCB=∠DCE,根据全等三角形的性质即可得到结论;(2)①由点B(0,9),得到OB=9,根据全等三角形的性质得到∠CDE=∠BOC=90°,根据等边三角形的性质得到∠DEC=30°,求得,过E作EF⊥x轴于F,角三角形即可得到结论;②存在,如图,当时,当CE=PE,根据等腰三角形的性质即可得到结论;③不会变化,连接EM,根据三角形的面积公式即可得到结论.【详解】(1)∵△ODC和△EBC都是等边三角形∴OC=DC,BC=CE,∠OCD=∠BCE=60°∴∠BCE+∠BCD=∠OCD+∠BCD即∠ECD=∠BCO∴△DEC≌△OBC(SAS)∴DE=BO(2)①∵点B(0,9),∴OB=9,由(1)知△BCO≌△ECD,∴∠CDE=∠BOC=90°,∴DE⊥BC,∵△EBC是等边三角形,∴∠DEC=30°,∴∠OBC=∠DEC=30°,∴,,∴,过E作EF⊥x轴于F,∵∠DCO=∠BCE=60°,∴∠ECF=60°,∵,∴,,∵,∴,∴E(6,9);②存在,如图,当时,∵,∴,,∴;当CE=PE,∵∠ECP=60°,∴△CPE是等边三角形,∴P2,P3重合,∴当△PEC为等腰三角形时,点P的坐标为(-3,0)或(9,0);③不会变化,如图,连接EM,∵∵BC=CE=BE,∴GM+MH=DE=9,∴MH+MG的值不会发生变化.【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定,三角形面积的计算,熟练掌握等边三角形的性质是解题的关键.14.F解析:(1)48°;(2)∠PQF=∠A+∠ACE,理由见解析【解析】【分析】(1)过点C作CD∥EH,根据两直线平行,内错角相等可得∠DCN=∠CNG=42°,进而可证得∠HMC=∠ACD=48°即可;(2)根据平行线的性质及三角形的外角性质即可得证.【详解】解:(1)如图,过点C作CD∥EH,∵CD∥EH,EH∥FG,∴CD∥FG,∴∠DCN=∠CNG=42°,∵∠ACB=90°,∴∠ACD=∠ACB﹣∠DCN=90°﹣42°=48°,∵CD∥EH,∴∠HMC=∠ACD=48°,(2)∠PQF=∠A+∠ACE,理由如下:∵EH∥FG,∴∠PQF=∠APE,∵∠APE是△APM的外角,∴∠APE=∠A+∠ACE,∴∠PQF=∠A+∠ACE.【点睛】本题考查了平行线的性质及判定,三角形的外角性质,正确作出辅助线以及利用三角形的外角性质是解决本题的关键.15.A解析:(1)A(﹣3,0),C(1,0),B(0,3);(2)M(﹣,);(3)2,P(﹣,).【解析】【分析】(1)抛物线中,令,可得A,C坐标;当x=0时,可得B的坐标;(2)首先利用A、C坐标,求出D的坐标,根据BE=2ED,求出点E坐标,求出直线CE,利用方程组求交点坐标M即可;(3)先证明△QAR≌△GAP即可得出QR=PG,进而得到PA+PC+PG=PR+PC+QR,可得当Q,R,P,C共线时,PA+PC+PG的值最小,即为线段QC的长,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K,利用勾股定理求得QC的长,再求出AM,CM,利用等边三角形性质求出AP、PM、PC,由此即可解决问题.【详解】解:(1)抛物线y=﹣x2﹣2x+3中,令y=﹣x2﹣2x+3=0,可得x1=1,x2=﹣3,∴A(﹣3,0),C(1,0),当x=0时,y=3,∴B(0,3);(2)∵点D为AC中点,A(﹣3,0),C(1,0),∴D(﹣1,0),∵BE=2DE,B(0,3),∴E(﹣,1),设直线CE为y=kx+b,把C(1,0),E(﹣,1)代入,可得,解得,∴直线CE为y=﹣x+,解方程组,可得或,∵M在第二象限,∴M(﹣,);(3)∵△APR和△AGQ是等边三角形,∴AP=AR=PR,AQ=AG,∠QAG=∠RAP=60°,∴∠QAR=∠GAP,在△QAR和△GAP中,,∴△QAR≌△GAP(SAS),∴QR=PG,∴PA+PC+PG=PR+PC+QR,∴当Q,R,P,C共线时,PA+PC+PG的值最小,即为线段QC的长,如图3,作QN⊥OA于N,作AM⊥CQ于M,作PK⊥CN于K,依题意得∠GAO=45°+15°=60°,AO=3,∴AG=GQ=QA=6,∠AGO=30°,OG=3,∵∠AGQ=60°,∴∠QGO=90°,∴Q(﹣6,3),在Rt△QNC中,QN=3,CN=6+1=7,∴QC==2,即PA+PC+PG的最小值为2,∴sin∠ACM==,∴AM==,∵△APR是等边三角形,∴∠APM=60°,PM=AM,MC==,∴PC=CM﹣PM=,∵sin∠PCN==,cos∠PCN==,∴PK=,CK=,∴OK=,∴P(﹣,).【点睛】本题属于二次函数综合题,主要考查了等边三角形的性质、全等三角形的判定和性质、勾股定理以及解直角三角形等知识的综合应用,解题的关键是理解Q、R、P、C共线时,PA+PG+PC最小,学会添加常用辅助线,构造直角三角形,利用勾股定理计算求解.16.C解析:(1);(2)①见解析;②【解析】【分析】(1)由圆周角定理,得到∠CAB=∠ABC=∠ADC=45°,由角平分线的定义和三角形的外角性质,得到∠CAE=∠CEA,结合等腰三角形的性质和三角形的内角和定理,即可求出答案;(2)①根据题意,将△ADM绕点A逆时针旋转90°,得到,连接,由旋转的性质,△ADM≌△,得到DM=,然后证明△AC≌△MAC,得到=CM,利用勾股定理,即可得到结论成立;②连接CF,由(1)可知AC=BC=CE,根据等腰直角三角形的性质和勾股定理求出CE的长度,然后利用相似三角形的判定和性质,得到线段的比,然后构建方程,求出CM的长度,即可得到ME的长度.【详解】(1)解:∵AB是⊙O的直径,∴∠ACB=90°,∵点C为弧AB中点,∴=,∴∠CAB=∠ABC=∠ADC=45°,AC=BC∴△ACB是等腰直角三角形∵∠DAM的平分线,∴∠MAE=∠EAD∵∠CAE=∠CAB+∠MAE,∠CEA=∠ADC+∠EAD,∴∠CAE=∠CEA,∴AC=CE=BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论