版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省洛阳市南庄中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数的一个单调增区间是(
)A. B. C. D.参考答案:A【考点】复合三角函数的单调性.【专题】计算题;压轴题;转化思想;换元法.【分析】化简函数为关于cosx的二次函数,然后换元,分别求出单调区间判定选项的正误.【解答】解.函数=cos2x﹣cosx﹣1,原函数看作g(t)=t2﹣t﹣1,t=cosx,对于g(t)=t2﹣t﹣1,当时,g(t)为减函数,当时,g(t)为增函数,当时,t=cosx减函数,且,∴原函数此时是单调增,故选A【点评】本题考查三角函数的单调性,考查发现问题解决问题的能力,是中档题.2.已知全集,集合,则为A.
B.
C.
D.参考答案:C3.f(x)的定义在R上的奇函数,它的最小正周期为T,则的值为
(
)A.0
B.
C.T
D.-参考答案:A4.奇函数f(x)、偶函数g(x)的图象分别如图1、2所示,方程f(g(x))=0、g(f(x))=0的实根个数分别为a、b,则a+b=()A.14 B.10 C.7 D.3参考答案:B【考点】奇偶函数图象的对称性.【专题】计算题.【分析】先利用奇函数和偶函数的图象性质判断两函数的图象,再利用图象由外到内分别解方程即可得两方程解的个数,最后求和即可【解答】解:由图可知,图1为f(x)图象,图2为g(x)的图象,m∈(﹣2,﹣1),n∈(1,2)∴方程f(g(x))=0?g(x)=﹣1或g(x)=0或g(x)=1?x=﹣1,x=1,x=m,x=0,x=n,x=﹣2,x=2,∴方程f(g(x))=0有7个根,即a=7;而方程g(f(x))=0?f(x)=a或f(x)=0或f(x)=b?f(x)=0?x=﹣1,x=0,x=1,∴方程g(f(x))=0有3个根,即b=3∴a+b=10故选Baa【点评】本题主要考查了函数奇偶性的图象性质,利用函数图象解方程的方法,数形结合的思想方法,属基础题5.若向量,的夹角为,且|=2,||=1,则向量与向量+2的夹角为()A. B. C. D.参考答案:D【考点】数量积表示两个向量的夹角.【分析】先计算,||,再利用夹角公式cosα=,可得结论.【解答】解:设向量与向量的夹角等于α∵向量,的夹角为,且,,∴==4+2×2×1×cos=6,||===∴cosα===∵α∈[0,π]∴α=故选D.6.已知,则(
)
A、
B、
C、
D、参考答案:D7.若函数的表达式是(
)A.
B.
C.
D.参考答案:B略8.已知双曲线的左右焦点分别为,直线经过点且与该双曲线的右支交于两点,若的周长为,则该双曲线离心率的取值范围是(
)A.
B.
C.
D.参考答案:A直线y=k(x﹣1)经过双曲线的右焦点,∴△AF1B的周长为4a+2|AB|,∵,∴,即:,即,,解得∴双曲线离心率的取值范围是故选:A.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于a,b,c的方程或不等式,再根据a,b,c的关系消掉b得到a,c的关系式,建立关于a,b,c的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.9.若tanα+=,α∈(,),则sin(2α+)+2coscos2α的值为
.参考答案:0【考点】二倍角的余弦.【专题】三角函数的求值.【分析】由条件求得tanα的值,再利用同角三角函数的基本关系,二倍角公式化简所给的式子,求得结果.【解答】解:∵tanα+=,α∈(,),∴tanα=3,或tanα=(舍去),则sin(2α+)+2coscos2α=sin2αcos+cos2αsin+?=sin2α+cos2α+=?+?+=?+?+=?+?+=0,故答案为:0.【点评】本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于基础题.10.数列{an}满足,则数列{an}的前20项的和为A.100
B.-100
C.-110
D.110参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.设集合
,则集合中元素的最小值是
.
参考答案:12.如图,某几何体的三视图均为腰长为1的等腰直角三角形,则此几何体最长的棱长为___参考答案:【知识点】三视图
G2解析:由题意可作出三视图的直观图是四个面都是直角三角形的四面体,由直观图可知最长的棱长为【思路点拨】由几何体的三视图可以想出直观图,再由直观图求出棱长.13.一个空间几何体的三视图如右图所示,其中主视图和侧视图都是半径为的圆,且这个几何体是球体的一部分,则这个几何体的表面积为________________.参考答案:略14.设函数f(x)=3x3﹣x+a(a>0),若f(x)恰有两个零点,则a的值为.参考答案:
【考点】函数零点的判定定理.【分析】利用导数求出函数的极大值和极小值,要使函数f(x)=3x3﹣x+a恰有2个零点,则满足极大值等于0或极小值等于0,由此求得a值.【解答】解:∵f(x)=3x3﹣x+a,∴f′(x)=9x2﹣1,由f'(x)>0,得x>或x<﹣,此时函数单调递增,由f'(x)<0,得﹣<x<,此时函数单调递减.即当x=﹣时,函数f(x)取得极大值,当x=时,函数f(x)取得极小值.要使函数f(x)=3x3﹣x+a恰有两个零点,则满足极大值等于0或极小值等于0,由极大值f(﹣)==0,解得a=﹣;再由极小值f()=,解得a=.∵a>0,∴a=.故答案为:.15.二项式的展开式中含的项的系数是(用数字作答).
参考答案:10略16.若数列{an}是各项均为正数的等比数列,则当时,数列{bn}也是等比数列;类比上述性质,若数列{cn}是等差数列,则当dn=时,数列{dn}也是等差数列.参考答案:略17.在等比数列{an}中,a5=4,a7=8,则a9=
.参考答案:16考点:等比数列的性质.专题:计算题;等差数列与等比数列.分析:由等比数列的性质知,故可求a9.解答: 解:由等比数列的性质知,故a9=16.故答案为:16,.点评:本题考查等比数列的性质,比较基础.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)在中,.(Ⅰ)求角;(Ⅱ)设的面积为,且,求边的长.参考答案:解:(1)由得∵为的内角,∴(2)∵∴,解得在中,由正弦定理得:,即,解得略19.(文)若,试说明函数的单调性,并求使不等式恒成立的的取值范围.
参考答案:(文)解:(1)由题意,对任意,,即,………………2分即,,因为为任意实数,所以.
………………4分解法二:因为是定义域为的奇函数,所以,即,.当时,,,是奇函数.所以的值为.
………………4分(2)由(1)知,由,得,解得.………………6分当时,是减函数,也是减函数,所以是减函数.………………7分由,所以,………………8分因为是奇函数,所以.
………………9分因为是上的减函数,所以即对任意成立,
………………11分所以△,
………………12分解得.
………………13分所以,的取值范围是.
………………14分
略20.(本小题满分14分)设数列满足,且,数列满足,已知,其中:(I)当m=l时,求;(II)设为数列的前n项和,若对于任意的正整数n,都有恒成立,求实数m的取值范围.参考答案:21.已知动点到点的距离等于它到直线的距离.(1)求点的轨迹的方程;(2)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段,的中点分别为,求证:直线恒过一个定点.参考答案:解:(1)设动点的坐标为,由题意得,,---------------------------------------------3分化简得,所以点的轨迹的方程为.-------------------5分(2)设两点坐标分别为,,则点的坐标为.由题意可设直线的方程为,由
.
---------------7分.因为直线与曲线于两点,所以,.所以点的坐标为.
------------9分由题知,直线的斜率为,同理可得点的坐标为.--10分当时,有,此时直线的斜率.
所以,直线的方程为,------------------11分整理得.于是,直线恒过定点;
-----12分当时,直线的方程为,也过点.综上所述,直线恒过定点.
--------------
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高中生物生成性课堂特征的实践初探
- 续签合同工作计划
- 2024年创业团队合伙协议
- 设备采购合同二范本设备
- 课后对地球的重新认识
- 财务咨询服务委托协议
- 质量守护信誉保证
- 购销合同中的鱼质量问题
- 购销合同取消协议格式
- 购销合同解除协议文本
- 六年级上册计算题专项练习1000题及答案
- 积极心理学:塑造刚健自信的中国青年智慧树知到课后章节答案2023年下上海思博职业技术学院
- 愚公移山英文 -中国故事英文版课件
- 《口腔修复学(一)》教学大纲
- 砌体结构知识讲解
- 佛山纺织调查报告
- 六年级趣味数学活动课堂(课堂PPT)
- 液压破碎锤液压系统的设计与研究
- 百灵达X1622USB - X2222USB - X2442USB - 中文说明书 - 图文-
- 植物中淀粉含量测定
- 供应商调查表(范本)
评论
0/150
提交评论