版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年福建省长乐高级中学高三第四次模拟考试数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知三棱锥P﹣ABC的顶点都在球O的球面上,PA,PB,AB=4,CA=CB,面PAB⊥面ABC,则球O的表面积为()A. B. C. D.2.2019年10月1日上午,庆祝中华人民共和国成立70周年阅兵仪式在天安门广场隆重举行.这次阅兵不仅展示了我国的科技军事力量,更是让世界感受到了中国的日新月异.今年的阅兵方阵有一个很抢眼,他们就是院校科研方阵.他们是由军事科学院、国防大学、国防科技大学联合组建.若已知甲、乙、丙三人来自上述三所学校,学历分别有学士、硕士、博士学位.现知道:①甲不是军事科学院的;②来自军事科学院的不是博士;③乙不是军事科学院的;④乙不是博士学位;⑤国防科技大学的是研究生.则丙是来自哪个院校的,学位是什么()A.国防大学,研究生 B.国防大学,博士C.军事科学院,学士 D.国防科技大学,研究生3.若数列满足且,则使的的值为()A. B. C. D.4.一袋中装有个红球和个黑球(除颜色外无区别),任取球,记其中黑球数为,则为()A. B. C. D.5.已知集合,集合,则等于()A. B.C. D.6.在棱长均相等的正三棱柱中,为的中点,在上,且,则下述结论:①;②;③平面平面:④异面直线与所成角为其中正确命题的个数为()A.1 B.2 C.3 D.47.的展开式中,含项的系数为()A. B. C. D.8.某工厂利用随机数表示对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,……,599,600.从中抽取60个样本,下图提供随机数表的第4行到第6行:若从表中第6行第6列开始向右读取数据,则得到的第6个样本编号是()A.324 B.522 C.535 D.5789.已知等差数列中,则()A.10 B.16 C.20 D.2410.如图,正三棱柱各条棱的长度均相等,为的中点,分别是线段和线段的动点(含端点),且满足,当运动时,下列结论中不正确的是A.在内总存在与平面平行的线段B.平面平面C.三棱锥的体积为定值D.可能为直角三角形11.已知函数的图象如图所示,则可以为()A. B. C. D.12.要得到函数的图像,只需把函数的图像()A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位二、填空题:本题共4小题,每小题5分,共20分。13.设,则_____,(的值为______.14.已知复数,其中为虚数单位,若复数为纯虚数,则实数的值是__.15.下图是一个算法流程图,则输出的S的值是______.16.在正方体中,为棱的中点,是棱上的点,且,则异面直线与所成角的余弦值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在中,已知,,,为线段的中点,是由绕直线旋转而成,记二面角的大小为.(1)当平面平面时,求的值;(2)当时,求二面角的余弦值.18.(12分)在平面直角坐标系中,点,直线的参数方程为为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于不同的两点是线段的中点,当时,求的值.19.(12分)若不等式在时恒成立,则的取值范围是__________.20.(12分)在直角坐标系中,直线的参数方程为(为参数,).在以为极点,轴正半轴为极轴的极坐标中,曲线:.(1)当时,求与的交点的极坐标;(2)直线与曲线交于,两点,线段中点为,求的值.21.(12分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.22.(10分)记抛物线的焦点为,点在抛物线上,且直线的斜率为1,当直线过点时,.(1)求抛物线的方程;(2)若,直线与交于点,,求直线的斜率.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
由题意画出图形,找出△PAB外接圆的圆心及三棱锥P﹣BCD的外接球心O,通过求解三角形求出三棱锥P﹣BCD的外接球的半径,则答案可求.【详解】如图;设AB的中点为D;∵PA,PB,AB=4,∴△PAB为直角三角形,且斜边为AB,故其外接圆半径为:rAB=AD=2;设外接球球心为O;∵CA=CB,面PAB⊥面ABC,∴CD⊥AB可得CD⊥面PAB;且DC.∴O在CD上;故有:AO2=OD2+AD2⇒R2=(R)2+r2⇒R;∴球O的表面积为:4πR2=4π.故选:D.【点睛】本题考查多面体外接球表面积的求法,考查数形结合的解题思想方法,考查思维能力与计算能力,属于中档题.2、C【解析】
根据①③可判断丙的院校;由②和⑤可判断丙的学位.【详解】由题意①甲不是军事科学院的,③乙不是军事科学院的;则丙来自军事科学院;由②来自军事科学院的不是博士,则丙不是博士;由⑤国防科技大学的是研究生,可知丙不是研究生,故丙为学士.综上可知,丙来自军事科学院,学位是学士.故选:C.【点睛】本题考查了合情推理的简单应用,由条件的相互牵制判断符合要求的情况,属于基础题.3、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.4、A【解析】
由题意可知,随机变量的可能取值有、、、,计算出随机变量在不同取值下的概率,进而可求得随机变量的数学期望值.【详解】由题意可知,随机变量的可能取值有、、、,则,,,.因此,随机变量的数学期望为.故选:A.【点睛】本题考查随机变量数学期望的计算,考查计算能力,属于基础题.5、B【解析】
求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.6、B【解析】
设出棱长,通过直线与直线的垂直判断直线与直线的平行,推出①的正误;判断是的中点推出②正的误;利用直线与平面垂直推出平面与平面垂直推出③正的误;建立空间直角坐标系求出异面直线与所成角判断④的正误.【详解】解:不妨设棱长为:2,对于①连结,则,即与不垂直,又,①不正确;对于②,连结,,在中,,而,是的中点,所以,②正确;对于③由②可知,在中,,连结,易知,而在中,,,即,又,面,平面平面,③正确;以为坐标原点,平面上过点垂直于的直线为轴,所在的直线为轴,所在的直线为轴,建立如图所示的直角坐标系;,,,,,;,;异面直线与所成角为,,故.④不正确.故选:.【点睛】本题考查命题的真假的判断,棱锥的结构特征,直线与平面垂直,直线与直线的位置关系的应用,考查空间想象能力以及逻辑推理能力.7、B【解析】
在二项展开式的通项公式中,令的幂指数等于,求出的值,即可求得含项的系数.【详解】的展开式通项为,令,得,可得含项的系数为.故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.8、D【解析】
因为要对600个零件进行编号,所以编号必须是三位数,因此按要求从第6行第6列开始向右读取数据,大于600的,重复出现的舍去,直至得到第六个编号.【详解】从第6行第6列开始向右读取数据,编号内的数据依次为:,因为535重复出现,所以符合要求的数据依次为,故第6个数据为578.选D.【点睛】本题考查了随机数表表的应用,正确掌握随机数表法的使用方法是解题的关键.9、C【解析】
根据等差数列性质得到,再计算得到答案.【详解】已知等差数列中,故答案选C【点睛】本题考查了等差数列的性质,是数列的常考题型.10、D【解析】
A项用平行于平面ABC的平面与平面MDN相交,则交线与平面ABC平行;B项利用线面垂直的判定定理;C项三棱锥与三棱锥体积相等,三棱锥的底面积是定值,高也是定值,则体积是定值;D项用反证法说明三角形DMN不可能是直角三角形.【详解】A项,用平行于平面ABC的平面截平面MND,则交线平行于平面ABC,故正确;B项,如图:当M、N分别在BB1、CC1上运动时,若满足BM=CN,则线段MN必过正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正确;C项,当M、N分别在BB1、CC1上运动时,△A1DM的面积不变,N到平面A1DM的距离不变,所以棱锥N-A1DM的体积不变,即三棱锥A1-DMN的体积为定值,故正确;D项,若△DMN为直角三角形,则必是以∠MDN为直角的直角三角形,但MN的最大值为BC1,而此时DM,DN的长大于BB1,所以△DMN不可能为直角三角形,故错误.故选D【点睛】本题考查了命题真假判断、棱柱的结构特征、空间想象力和思维能力,意在考查对线面、面面平行、垂直的判定和性质的应用,是中档题.11、A【解析】
根据图象可知,函数为奇函数,以及函数在上单调递增,且有一个零点,即可对选项逐个验证即可得出.【详解】首先对4个选项进行奇偶性判断,可知,为偶函数,不符合题意,排除B;其次,在剩下的3个选项,对其在上的零点个数进行判断,在上无零点,不符合题意,排除D;然后,对剩下的2个选项,进行单调性判断,在上单调递减,不符合题意,排除C.故选:A.【点睛】本题主要考查图象的识别和函数性质的判断,意在考查学生的直观想象能力和逻辑推理能力,属于容易题.12、A【解析】
运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【详解】解:.对于A:可得.故选:A.【点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.二、填空题:本题共4小题,每小题5分,共20分。13、7201【解析】
利用二项展开式的通式可求出;令中的,得两个式子,代入可得结果.【详解】利用二项式系数公式,,故,,故(=,故答案为:720;1.【点睛】本题考查二项展开式的通项公式的应用,考查赋值法,是基础题.14、2【解析】
由题,得,然后根据纯虚数的定义,即可得到本题答案.【详解】由题,得,又复数为纯虚数,所以,解得.故答案为:2【点睛】本题主要考查纯虚数定义的应用,属基础题.15、【解析】
根据流程图,运行程序即得.【详解】第一次运行,;第二次运行,;第三次运行,;第四次运行;所以输出的S的值是.故答案为:【点睛】本题考查算法流程图,是基础题.16、【解析】
根据题意画出几何题,建立空间直角坐标系,写个各个点的坐标,并求得.由空间向量的夹角求法即可求得异面直线与所成角的余弦值.【详解】根据题意画出几何图形,以为原点建立空间直角坐标系:设正方体的棱长为1,则所以所以,所以异面直线与所成角的余弦值为,故答案为:.【点睛】本题考查了异面直线夹角的求法,利用空间向量求异面直线夹角,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)平面平面,建立坐标系,根据法向量互相垂直求得;(2)求两个平面的法向量的夹角.【详解】(1)如图,以为原点,在平面内垂直于的直线为轴所在的直线分别为轴,轴,建立空间直角坐标系,则,设为平面的一个法向量,由得,取,则因为平面的一个法向量为由平面平面,得所以即.(2)设二面角的大小为,当平面的一个法向量为,综上,二面角的余弦值为.【点睛】本题考查用空间向量求平面间的夹角,平面与平面垂直的判定,二面角的平面角及求法,难度一般.18、(1);(2).【解析】
(1)在已知极坐标方程两边同时乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲线C的直角坐标方程;(2)联立直线l的参数方程与x2=4y由韦达定理以及参数的几何意义和弦长公式可得弦长与已知弦长相等可解得.【详解】解:(1)在ρ+ρcos2θ=8sinθ中两边同时乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8ρsinθ,∴x2+y2+x2﹣y2=8y,即x2=4y,所以曲线C的直角坐标方程为:x2=4y.(2)联立直线l的参数方程与x2=4y得:(cosα)2t2﹣4(sinα)t+4=0,设A,B两点对应的参数分别为t1,t2,由△=16sin2α﹣16cos2α>0,得sinα>,t1+t2=,由|PM|=,所以20sin2α+9sinα﹣20=0,解得sinα=或sinα=﹣(舍去),所以sinα=.【点睛】本题考查了简单曲线的极坐标方程,属中档题.19、【解析】
原不等式等价于在恒成立,令,,求出在上的最小值后可得的取值范围.【详解】因为在时恒成立,故在恒成立.令,由可得.令,,则为上的增函数,故.故.故答案为:.【点睛】本题考查含参数的不等式的恒成立,对于此类问题,优先考虑参变分离,把恒成立问题转化为不含参数的新函数的最值问题,本题属于基础题.20、(1),;(2)【解析】
(1)依题意可知,直线的极坐标方程为(),再对分三种情况考虑;(2)利用直线参数方程参数的几何意义,求弦长即可得到答案.【详解】(1)依题意可知,直线的极坐标方程为(),当时,联立解得交点,当时,经检验满足两方程,(易漏解之处忽略的情况)当时,无交点;综上,曲线与直线的点极坐标为,,(2)把直线的参数方程代入曲线,得,可知,,所以.【点睛】本题考查直线与曲线交点的极坐标、利用参数方程参数的几何意义求弦长,考查函数与方程思想、转化与化归思想、分类讨论思想,考查逻辑推理能力、运算求解能力.21、(1);(2)分布列见详解,期望为;(3)余下所有零件不用检验,理由见详解.【解析】
(1)计算的频率,并且与进行比较,判断中位数落在的区间,然后根据频率的计算方法,可得结果.(2)计算位于之外的零件中随机抽取个的总数,写出所有可能取值,并计算相对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版钢筋工程合同风险管理合同3篇
- 全国赛课一等奖人教版数学六年级上册《分数除法一个数除以分数》课件
- 八年级数学家长会课件
- 体育赛事承办合同协议书范本
- 2024版汽车零部件采购与销售合同2篇
- 资金监管的合同范本2024版
- 2024年度建筑工程渣土绿色运输合同3篇
- 基于2024年度的广告投放合同具体描述3篇
- 河北省劳动合同
- 实习合同范本
- 最新四川省教师资格认定体检表.docx
- 永磁电动机使用说明书胜利顺天
- 球形网架结构的吊顶施工做法
- 孟母三迁(课堂PPT)
- 人教版八年级数学上册14.3.2《公式法》第2课时 教 案
- 股东会同意借款决议范本专业版
- 《南州六月荔枝丹》学习要点
- 软件工程实验报告_学生成绩管理系统
- 九年义务教育全日制小学音乐教学器材配备目录
- MSDS(10-100048)聚脂烤漆
- 船舶风险辩识、评估及管控须知
评论
0/150
提交评论