版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省邵阳市武冈第十中学2022-2023学年高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知全集U=R,集合,,则等于(
)A.(0,2) B.(0,3) C. D.(0,2]参考答案:D【分析】解不等式得集合A,进而可得,求解函数定义域可得集合B,利用交集求解即可.【详解】因为集合,,所以,故选D.【点睛】本题主要考查了集合的补集及交集的运算,属于基础题.2.直线xsinα+y+2=0的倾斜角的取值范围是()A.[0,π)
B.∪
C.
D.∪参考答案:B略3.已知集合A=,B=,则A∩B等于()A.[1,3]
B.[1,5]
C.[3,5]
D.[1,+∞)参考答案:C【分析】求出中不等式的解集确定出,求出中的范围确定出,找出与的交集即可【详解】由中不等式变形可得:,解得由中得到,即则故选
4.已知f(x)是定义在(0,+∞)上的单调递减函数,是f(x)的导函数,若,则下列不等式成立的是(
)A. B.C. D.参考答案:C【分析】先由题意得到,化不等式若为,再令,对函数求导,判断出其单调性,即可求出结果.【详解】因为是定义在上的单调递减函数,所以时,,因此,由,可得,令,,则,即函数在上单调递增;所以,即,故ABD错误,C正确.故选C【点睛】本题主要考查导数的应用,利用导数的方法研究函数的单调性即可,属于常考题型.5.在的展开式中不含的项的系数绝对值的和为243,不含的项的系数绝对值的和为32,则的值可能为(
)
A.
B.
C.
D.参考答案:D试题分析:据展开式中不含的项是个都不出,即展开式中不含的项的系数绝对值的和就是展开式中系数绝对值的和,同样的道理能得不含的项的系数绝对值的和,列出方程解得.根据求解的二项式系数的特征,通过不同的赋值得出的关系式,然后加以整合.由题意,令,不含的项的系数的绝对值为;令,不含的项的系数的绝对值为,∴,,将各选项的参数取值代入验证知,.故选D.考点:二项式定理与性质.6.若直线与圆相切,则的值为(
) .
.
.
.或参考答案:C略7.如果执行右面的程序框图,那么输出的().w.w.w.k.s.5.u.c.o.m
A.22
B.46
C.
D.190
参考答案:C8.已知向量满足,且关于x的函数在R上有极值,则与的夹角的取值范围为(
)A.(]
B.[]
C.(0,]
D.(]参考答案:A9.等差数列中,(
)A.9
B.10
C.11
D.12参考答案:B10.设是函数的导函数,的图象如图所示,则的图象最有可能是(
)
参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知圆C的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则的最大值是
.参考答案:12.对定义在区间D上的函数f(x)和g(x),如果对任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被G(X)替代,D称为“替代区间”.给出以下命题:①f(x)=x2+1在区间(﹣∞,+∞)上可被g(x)=x2替代;②f(x)=x可被g(x)=1﹣替代的一个“替代区间”为[,];③f(x)=lnx在区间[1,e]可被g(x)=x﹣b替代,则e﹣2≤b≤2;④f(x)=lg(ax2+x)(x∈D1),g(x)=sinx(x∈D2),则存在实数a(a≠0),使得f(x)在区间D1∩D2上被g(x)替代;其中真命题的有
.参考答案:①②③考点:函数的值域.专题:函数的性质及应用;导数的综合应用.分析:命题①直接由替代的定义得出为真命题;命题②|f(x)﹣g(x)|=,根据导数判断函数x+在区间上的最值,从而可说明|f(x)﹣g(x)|<1,从而可判断该命题正确;命题③,根据替代的定义,|f(x)﹣g(x)|≤1在[1,e]上恒成立,根据导数判断函数lnx﹣x+b在[1,e]上的单调性,根据单调性即可求出函数lnx﹣x+b的值域,该值域应为区间[﹣1,1]的子集,从而可得出b的取值范围,从而判断该命题的正误;命题④可先找出一个D1∩D2区间,可以在此区间找到一个x使对任意a|f(x)﹣g(x)|>1,从而便可判断出该命题错误,这样便可最后找出所有的真命题.解答: 解:①∵|f(x)﹣g(x)|=<1;f(x)可被g(x)替代;∴该命题为真命题;②|f(x)﹣g(x)|=;设h(x)=,h′(x)=;∴时,h′(x)<0,x∈(]时,h′(x)>0;∴是h(x)的最小值,又h()=,h()=;∴|f(x)﹣g(x)|<1;∴f(x)可被g(x)替代的一个替代区间为[];∴该命题是真命题;③由题意知:|f(x)﹣g(x)|=|lnx﹣x+b|≤1在x∈[1,e]上恒成立;设h(x)=lnx﹣x+b,则h′(x)=;∵x∈[1,e];∴h′(x)≤0;∴h(x)在[1,e]上单调递减;h(1)=b﹣1,h(e)=1﹣e+b;1﹣e+b≤h(x)≤b﹣1;又﹣1≤h(x)≤1;∴;∴e﹣2≤b≤2;∴该命题为真命题;④1)若a>0,解ax2+x>0得,x,或x>0;可取D1=(0,+∞),D2=R;∴D1∩D2=(0,+∞);可取x=π,则|f(x)﹣g(x)|=aπ2+π>1;∴不存在实数a(a>0),使得f(x)在区间D1∩D2上被g(x)替代;2)若a<0,解ax2+x>0得,x<0,或x;∴可取D1=(﹣∞,0),D2=R;∴D1∩D2=(﹣∞,0);取x=﹣π,则|f(﹣π)﹣g(﹣π)|=|aπ2﹣π|>1;∴不存在实数a(a<0),使得f(x)在区间D1∩D2上被g(x)替代;综上得,不存在实数a(a≠0),使得f(x)在区间D1∩D2上被g(x)替代;∴该命题为假命题;∴真命题的有:①②③.故答案为:①②③.点评:考查对替代定义的理解,根据函数导数判断函数单调性、求函数在闭区间上最值的方法,以及根据对数的真数大于0求函数定义域的方法,解一元二次不等式,在说明f(x)不能被g(x)替代的举反例即可.13.若x,y满足,则z=x+2y的取值范围为.参考答案:[0,]【考点】简单线性规划.【分析】画出约束条件的可行域,利用目标函数的几何意义,求解范围即可.【解答】解:x,y满足,不是的可行域如图:z=x+2y化为:y=﹣+,当y=﹣+经过可行域的O时目标函数取得最小值,经过A时,目标函数取得最大值,由,可得A(,),则z=x+2y的最小值为:0;最大值为:=.则z=x+2y的取值范围为:[0,].故答案为:[0,].【点评】本题考查的知识点是简单线性规划的应用,其中利用角点法是解答线性规划类小题最常用的方法,一定要掌握.14.若函数有两个零点,则实数的取值范围
▲
.参考答案:略15.如图,已知正方体,截去三个角,,后形成的几何体的体积与原正方体的体积之比值为
.参考答案:略16.已知数列{an}满足a1=33,an+1﹣an=2n,则的最小值为.参考答案:【考点】数列递推式;基本不等式在最值问题中的应用.【分析】由累加法求出an=33+n2﹣n,所以,设f(n)=,由此能导出n=5或6时f(n)有最小值.借此能得到的最小值.【解答】解:an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=2[1+2+…+(n﹣1)]+33=33+n2﹣n所以设f(n)=,令f′(n)=,则f(n)在上是单调递增,在上是递减的,因为n∈N+,所以当n=5或6时f(n)有最小值.又因为,,所以的最小值为17.“x>0”是“x≠0”的________条件.(“充分不必要条件”、“必要不充分”、“充要条件”、“既不充分也不必要条件”).参考答案:充分不必要略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A(﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理由.参考答案:【考点】直线与圆的位置关系;平面向量数量积的运算;直线的一般式方程.【专题】压轴题.【分析】(Ⅰ)根据已知,容易写出直线l的方程为y=3(x+1).将圆心C(0,3)代入方程易知l过圆心C.(Ⅱ)过A(﹣1,0)的一条动直线l.应当分为斜率存在和不存在两种情况;当直线l与x轴垂直时,进行验证.当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于弦长,利用垂径定理,则圆心C到弦的距离|CM|=1.从而解得斜率K来得出直线l的方程为.(Ⅲ)同样,当l与x轴垂直时,要对设t=,进行验证.当l的斜率存在时,设直线l的方程为y=k(x+1),代入圆的方程得到一个二次方程.充分利用“两根之和”和“两根之积”去找.再用两根直线方程联立,去找.从而确定t=的代数表达式,再讨论t是否为定值.【解答】解:(Ⅰ)由已知,故kl=3,所以直线l的方程为y=3(x+1).将圆心C(0,3)代入方程易知l过圆心C.(Ⅱ)当直线l与x轴垂直时,易知x=﹣1符合题意;当直线与x轴不垂直时,设直线l的方程为y=k(x+1),由于,所以|CM|=1.由,解得.故直线l的方程为x=﹣1或4x﹣3y+4=0.(Ⅲ)当l与x轴垂直时,易得M(﹣1,3),,又A(﹣1,0)则,,故.即t=﹣5.当l的斜率存在时,设直线l的方程为y=k(x+1),代入圆的方程得(1+k2)x2+(2k2﹣6k)x+k2﹣6k+5=0.则,,即,=.又由得,则.故t=.综上,t的值为定值,且t=﹣5.另解一:连接CA,延长交m于点R,由(Ⅰ)知AR⊥m.又CM⊥l于M,故△ANR∽△AMC.于是有|AM|?|AN|=|AC|?|AR|.由,得|AM|?|AN|=5.故另解二:连接CA并延长交直线m于点B,连接CM,CN,由(Ⅰ)知AC⊥m,又CM⊥l,所以四点M,C,N,B都在以CN为直径的圆上,由相交弦定理得.【点评】(1)用直线方程时,一定要注意分为斜率存在和不存在两种情况.一般是验证特殊,求解一般.(2)解决直线与圆相交弦相关计算时一般采用垂径定理求解.(3)涉及到直线和圆、圆锥曲线问题时,常常将直线代入曲线方程得到一个一元二次方程,再充分利用“两根之和”和“两根之积”整体求解.这种方法通常叫做“设而不求”.19.(12分)已知等差数列{an}满足:a3=7,a5+a7=26.{an}的前n项和为Sn.(1)求an及Sn;(2)令bn=(n∈N+),求数列{bn}的前n项和Tn.参考答案:(1)设等差数列{an}的公差为d,由于a3=7,a5+a7=26,所以a1+2d=7,2a1+10d=26,解得a1=3,d=2.由于an=a1+(n-1)d,Sn=,所以an=2n+1,Sn=n(n+2).(2)因为an=2n+1,所以a-1=4n(n+1),因此bn==.故Tn=b1+b2+…+bn===,所以数列{bn}的前n项和Tn=.略20.(15分)已知抛物线C:y2=2x,O为坐标原点,经过点M(2,0)的直线l交抛物线于A,B两点,P为抛物线C上一点.(Ⅰ)若直线l垂直于x轴,求|﹣|的值;(Ⅱ)求三角形OAB的面积S的取值范围.参考答案:(Ⅰ)不妨设A(2,2),B(2,﹣2),P(,t),则|﹣|=|﹣|=2;(Ⅱ)设l:x=ky+2,代入y2=2x中,可得y2﹣2ky﹣4=0设点A(x1,y1),B(x2,y2),则y1+y2=2k,y1y2=﹣4,∴|AB|=?,∴三角形OAB的面积S=???=2≥4,∴三角形OAB的面积S的取值范围为[4,+∞).21.已知函数的图象过点(-1,-6),且二次函数的图象关于y轴对称。(1)求m、n的值;(2)求函数y=f(x)的单调区间。
参考答案:解:(1)由函数f(x)图象过点(-1,-6),得m-n=-3,……①
…2分由f(x)=x3+mx2+nx-2,得f′(x)=3x2+2mx+n,…3分则g(x)=f′(x)+6x=3x2+(2m+6)x+n;…4分由于二次函数g(x)图象关于y轴对称,所以,解得m=-3,
…5分代入①得n=0.于是有m=-3,
n=0.
…6分(2)由于f′(x)=3x2-6x=3x(x-2).…7分由f′(x)>得x>2或x<0,
…8分故f(x)的单调递增区间是(-∞,0),(2,+∞);由f′(x)<0得0<x<2,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专职司机2024劳动协议模板版
- 2025年厂区物业服务与设施更新改造合同4篇
- 2025年茶叶原料供应长期合作协议4篇
- 专业2024年注塑车间承包合同2篇
- 2025年度智能交通信号控制系统合同4篇
- 二零二五年度厂房租赁及环保设施升级合同3篇
- 2024铁路危险品运输协议模板版
- 专项采购附加合同(2024修订版)版B版
- 二零二四塔吊操作人员劳务承包高空作业服务协议3篇
- 二零二五年度新型环保材料研发与市场拓展合同3篇
- 工程项目采购与供应链管理研究
- 2024年吉林高考语文试题及答案 (2) - 副本
- 拆除电缆线施工方案
- 搭竹架合同范本
- Neo4j介绍及实现原理
- 焊接材料-DIN-8555-标准
- 工程索赔真实案例范本
- 重症医学科运用PDCA循环降低ICU失禁性皮炎发生率品管圈QCC持续质量改进成果汇报
- 个人股权证明书
- 医院运送工作介绍
- 重症患者的容量管理
评论
0/150
提交评论