四川省广安市武胜县西关中学2022-2023学年八年级下学期期末数学试卷(含答案)_第1页
四川省广安市武胜县西关中学2022-2023学年八年级下学期期末数学试卷(含答案)_第2页
四川省广安市武胜县西关中学2022-2023学年八年级下学期期末数学试卷(含答案)_第3页
四川省广安市武胜县西关中学2022-2023学年八年级下学期期末数学试卷(含答案)_第4页
四川省广安市武胜县西关中学2022-2023学年八年级下学期期末数学试卷(含答案)_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

-2023学年四川省广安市武胜县西关中学八年级(下)期末数学试卷一.选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.(3分)下列各式中不是二次根式的是()A. B. C. D.2.(3分)由线段a,b,c组成的三角形是直角三角形的是()A.a=1,b=1,c=2 B.a=,b=1,c=1 C.a=4,b=5,c=6 D.a=1,b=2,c=3.(3分)如图,在▱ABCD中,CE是∠DCB的平分线,F是AB的中点,AB=6,BC=5,则AE:EF:FB为()A.1:2:3 B.2:1:3 C.3:2:1 D.3:1:24.(3分)一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是()A.平均数 B.中位数 C.众数 D.方差5.(3分)对于一次函数y=﹣2x+4,下列结论错误的是()A.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,则y1>y2 B.函数的图象不经过第三象限 C.函数的图象向下平移4个单位长度得y=﹣2x的图象 D.函数的图象与x轴的交点坐标是(0,4)6.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.87.(3分)在△ABC中,点E、D、F分别在AB、BC、AC上且DE∥CA,DF∥BA,下列四个判断中不正确的是()A.四边形AEDF是平行四边形 B.如果∠BAC=90°,那么四边形AEDF是矩形 C.如果AD⊥BC,那么四边形AEDF是菱形 D.如果AD平分∠BAC,那么四边形AEDF是菱形8.(3分)甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km,他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示,根据图象信息,下列说法正确个数为()①甲的速度是5km/h②乙的速度是10km/h③乙比甲晚出发1h④甲比乙晚到B地3h.A.1 B.2 C.3 D.49.(3分)如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C′处,若长方体的长AB=4cm,宽BC=3cm,高BB′=2cm,则蚂蚁爬行的最短路径是()A.cm B.cm C.cm D.7cm10.(3分)如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()A.(﹣3,0) B.(﹣6,0) C.(﹣,0) D.(﹣,0)二.填空题(共8小题,每小题3分,共24分)11.(3分)一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为.12.(3分)Rt△ABC中,∠ACB=90°,D为斜边AB的中点,AB=10cm,则CD的长为cm.13.(3分)直线y=kx+1与两坐标轴围成的三角形周长为6,则k=.14.(3分)函数y=的自变量x的取值范围是.15.(3分)如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=4,则图中阴影部分的面积为.16.(3分)如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为.17.(3分)如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b<x的解集为.18.(3分)如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确结论的序号是.三.解答题(满分0分)19.计算(1)(2).20.中国机器人创意大赛于2014年7月15日在哈尔滨开幕.如图是一参赛队员设计的机器人比赛时行走的路径,机器人从A处先往东走4m,又往北走1.5m,遇到障碍后又往西走2m,再转向北走4.5m处往东一拐,仅走0.5m就到达了B.问机器人从点A到点B之间的距离是多少?21.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)求证:BD=CD;(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.22.已知:如图,在▱ABCD中,O为对角线BD的中点,过点O的直线EF分别交AD,BC于E,F两点,连接BE,DF.(1)求证:△DOE≌△BOF;(2)当∠DOE等于多少度时,四边形BFDE为菱形?请说明理由.23.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标;(3)根据图象,写出关于x的不等式2x﹣4>kx+b的解集.24.某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费.为更好地决策,自来水公司随机抽取了部分用户的用水量数据,并绘制了如图不完整约统计图(每组数据包括右端点但不包括左端点).请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是.(2)补全频数分布直方图.(3)扇形图中“15吨一20吨”部分的圆心角的度数是.(4)如果自来水公司将基本用水量定为每户25吨,那么该地区6万用户中约有用户的用水全部享受基本价格.25.已知平行四边形ABCD位置在平面直角坐标系中如图1所示,BC=AC,且OA=6,OC=8.(1)求点D的坐标;(2)动点P从点C出发,以每秒1个单位的速度沿线段以向终点A运动,动点Q从点A出发以每秒2个单位的速度沿4射线AD运动,两点同时出发,当P到达终点时,点Q停止运动,在运动过程中,过点Q作MQ∥AB交射线AC于M(如图2).设PM=y,运动时间为t(t>0),求y与t的函数关系式,并直接写出自变量的取值范围;(3)在(2)的条件下,作点P关于直线CD的对称点P′(如图3),当P′D=时,求运动时间t.2022-2023学年四川省广安市武胜县西关中学八年级(下)期末数学试卷参考答案与试题解析一.选择题(共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一项是符合题意的)1.解:A、,∵x2+1≥1>0,∴符合二次根式的定义;故本选项正确;B、∵﹣4<0,∴不是二次根式;故本选项错误;C、∵0≥0,∴符合二次根式的定义;故本选项正确;D、符合二次根式的定义;故本选项正确.故选:B.2.解:A、因为12+12≠22,所以不能组成直角三角形,故本选项错误;B、因为12+12≠()2,不能组成直角三角形,故本选项错误;C、因为42+52≠62,所以不能组成直角三角形,故本选项错误;D、因为12+()2=22,所以能组成直角三角形,故本选项正确.故选:D.3.解:∵四边形ABCD是平行四边形,∴∠DCE=∠BEC,∵CE是∠DCB的平分线,∴∠DCE=∠BCE,∴∠CEB=∠BCE,∴BC=BE=5,∵F是AB的中点,AB=6,∴FB=3,∴EF=BE﹣FB=2,∴AE=AB﹣EF﹣FB=1,∴AE:EF:FB=1:2:3,故选:A.4.解:A、原来数据的平均数是2,添加数字2后平均数仍为2,故A与要求不符;B、原来数据的中位数是2,添加数字2后中位数仍为2,故B与要求不符;C、原来数据的众数是2,添加数字2后众数仍为2,故C与要求不符;D、原来数据的方差S2==,添加数字2后的方差S2==,故方差发生了变化.故选:D.5.解:A、因为一次函数y=﹣2x+4中k=﹣2<0,因此函数值随x的增大而减小,故A选项正确;B、因为一次函数y=﹣2x+4中k=﹣2<0,b=4>0,因此此函数的图象经过一、二、四象限,不经过第三象限,故B选项正确;C、由“上加下减”的原则可知,函数的图象向下平移4个单位长度得y=﹣2x的图象,故C选项正确;D、令y=0,则x=2,因此函数的图象与x轴的交点坐标是(2,0),故D选项错误.故选:D.6.解:∵+4+m=30,∴++=30,∴5=30,∴=6,∴m=6.故选:C.7.解:由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,故D正确;故选:C.8.解:甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故①③正确.故选:B.9.解:展开成平面后,连接AC′,则AC′的长就是绳子最短时的长度,分为三种情况:如图1,AB=4,BC′=2+3=5,在Rt△ABC′中,由勾股定理得:AC′==(cm);如图2,AC=4+3=7,CC′=2,在Rt△ACC′中,由勾股定理得:AC′==>,如图3,同法可求AC′=>即蚂蚁爬行的最短路径是cm,故选:C.10.解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选:C.二.填空题(共8小题,每小题3分,共24分)11.解:∵一组数据:25,29,20,x,14,它的中位数是24,所以x=24,∴这组数据为14,20,24,25,29,∴平均数=(14+20+24+25+29)÷5=22.4.故答案为:22.4.12.解:∵∠ACB=90°,D为斜边AB的中点,∴CD=AB=×10=5(cm).故答案为:5.13.解:直线与x轴的交点坐标为(﹣,0),与y轴的交点坐标为(0,1),斜边长为:.∴|﹣|+1+=6,(5﹣)2=1+()2,解得k=±.故答案为:±.14.解:由题意,得3﹣x≥0且x+2≠0,解得x≤3且x≠﹣2,故答案为:x≤3且x≠﹣2.15.解:∵四边形ABCD是矩形,∴AD∥BC,AD=BC,AO=OC,∴∠EAO=∠FCO,在△AEO和△CFO中∴△AEO≌△CFO,即△AEO和△CFO的面积相等,同理可证:△BOF和△DOE的面积相等,△ABO和△DOC的面积相等,即阴影部分的面积等于矩形ABCD的面积的一半,∵矩形面积是AB×BC=2×4=8,∴阴影部分的面积是4,故答案为:4.16.解:由勾股定理得:AB==5(m),故答案为:5m.17.解:将A(3,1)和B(6,0)分别代入y=kx+b得,,解得,则函数解析式为y=﹣x+2.可得不等式组,解得3<x<6.故答案为3<x<6.18.解:过点P作PN⊥AB,垂足为点N,延长AP,交EF于点M,∵四边形ABCD是正方形,∴∠ABP=∠CBD=45°,∴△DFP为等腰直角三角形,∴DF=PF,又AN=DF,∴AN=FP,又∵NP⊥AB,PE⊥BC,∴四边形BNPE是正方形,∴NP=EP,又∵AP=PC,四边形PECF为矩形,∴EF=PC,∴AP=EF,故①正确;在△ANP≌△FPE中则△ANP≌△FPE(SSS),∴∠PFE=∠BAP,故④正确;△APN与△FPM中,∠APN=∠FPM,∠NAP=∠PFM∴∠PMF=∠ANP=90°∴AP⊥EF,故②正确;P是BD上任意一点,因而△APD不一定是等腰三角形,故③错误;∵在Rt△PDF中,PD>PF,在矩形PECF中,PF=EC,∴PD>EC,故⑤错误;故答案为:①②④.三.解答题(满分0分)19.解:(1)原式=2+﹣+=3+;(2)原式==8+2,20.解:过点B作BC⊥AD于C,从图中可以看出AC=4﹣2+0.5=2.5m,BC=4.5+1.5=6m,在直角△ABC中,AB为斜边,则AB==m.答:机器人从点A到点B之间的距离是m.21.证明:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,,∴△AEF≌△DEC(AAS),∴AF=DC,∵AF=BD,∴BD=CD;(2)四边形AFBD是矩形.理由:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°∵AF=BD,∵过A点作BC的平行线交CE的延长线于点F,即AF∥BC,∴四边形AFBD是平行四边形,又∵∠ADB=90°,∴四边形AFBD是矩形.22.(1)证明:∵在▱ABCD中,O为对角线BD的中点,∴BO=DO,∠EDB=∠FBO,在△EOD和△FOB中,∴△DOE≌△BOF(ASA);(2)解:当∠DOE=90°时,四边形BFDE为菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD∴四边形EBFD是平行四边形,∵∠EOD=90°,∴EF⊥BD,∴四边形BFDE为菱形.23.解:(1)∵直线y=kx+b经过点A(5,0),B(1,4),∴,解得,∴直线AB的解析式为:y=﹣x+5;(2)∵若直线y=2x﹣4与直线AB相交于点C,∴.解得,∴点C(3,2);(3)根据图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论