版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年黑龙江省克东县第一中学高三3月份第一次模拟考试数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设分别为双曲线的左、右焦点,过点作圆的切线,与双曲线的左、右两支分别交于点,若,则双曲线渐近线的斜率为()A. B. C. D.2.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于()A. B. C. D.3.某个命题与自然数有关,且已证得“假设时该命题成立,则时该命题也成立”.现已知当时,该命题不成立,那么()A.当时,该命题不成立 B.当时,该命题成立C.当时,该命题不成立 D.当时,该命题成立4.若直线与圆相交所得弦长为,则()A.1 B.2 C. D.35.已知定义在上的函数,若函数为偶函数,且对任意,,都有,若,则实数的取值范围是()A. B. C. D.6.函数在内有且只有一个零点,则a的值为()A.3 B.-3 C.2 D.-27.在展开式中的常数项为A.1 B.2 C.3 D.78.已知定义在上的奇函数满足:(其中),且在区间上是减函数,令,,,则,,的大小关系(用不等号连接)为()A. B.C. D.9.已知a,b是两条不同的直线,α,β是两个不同的平面,且,,则“”是“”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件10.若均为任意实数,且,则的最小值为()A. B. C. D.11.若的二项展开式中的系数是40,则正整数的值为()A.4 B.5 C.6 D.712.设全集,集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则关于的不等式的解集为_______.14.在中,内角A,B,C的对边分别是a,b,c,且,,,则_______.15.若函数与函数,在公共点处有共同的切线,则实数的值为______.16.在中,角,,所对的边分别边,且,设角的角平分线交于点,则的值最小时,___.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知椭圆的短轴长为,直线与椭圆相交于两点,线段的中点为.当与连线的斜率为时,直线的倾斜角为(1)求椭圆的标准方程;(2)若是以为直径的圆上的任意一点,求证:18.(12分)如图,在多面体中,四边形是菱形,,,,平面,,,是的中点.(Ⅰ)求证:平面平面;(ⅠⅠ)求直线与平面所成的角的正弦值.19.(12分)为了保障全国第四次经济普查顺利进行,国家统计局从东部选择江苏,从中部选择河北、湖北,从西部选择宁夏,从直辖市中选择重庆作为国家综合试点地区,然后再逐级确定普查区域,直到基层的普查小区,在普查过程中首先要进行宣传培训,然后确定对象,最后入户登记,由于种种情况可能会导致入户登记不够顺利,这为正式普查提供了宝贵的试点经验,在某普查小区,共有50家企事业单位,150家个体经营户,普查情况如下表所示:普查对象类别顺利不顺利合计企事业单位401050个体经营户10050150合计14060200(1)写出选择5个国家综合试点地区采用的抽样方法;(2)根据列联表判断是否有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”;(3)以该小区的个体经营户为样本,频率作为概率,从全国个体经营户中随机选择3家作为普查对象,入户登记顺利的对象数记为,写出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82820.(12分)已知椭圆的离心率为,直线过椭圆的右焦点,过的直线交椭圆于两点(均异于左、右顶点).(1)求椭圆的方程;(2)已知直线,为椭圆的右顶点.若直线交于点,直线交于点,试判断是否为定值,若是,求出定值;若不是,说明理由.21.(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查.根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立.若零件的长度满足,则认为该零件是合格的,否则该零件不合格.(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率作为当天生产零件的不合格率.已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元.假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由.附:若随机变量服从正态分布,则.22.(10分)年,山东省高考将全面实行“选”的模式(即:语文、数学、外语为必考科目,剩下的物理、化学、历史、地理、生物、政治六科任选三科进行考试).为了了解学生对物理学科的喜好程度,某高中从高一年级学生中随机抽取人做调查.统计显示,男生喜欢物理的有人,不喜欢物理的有人;女生喜欢物理的有人,不喜欢物理的有人.(1)据此资料判断是否有的把握认为“喜欢物理与性别有关”;(2)为了了解学生对选科的认识,年级决定召开学生座谈会.现从名男同学和名女同学(其中男女喜欢物理)中,选取名男同学和名女同学参加座谈会,记参加座谈会的人中喜欢物理的人数为,求的分布列及期望.,其中.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
如图所示:切点为,连接,作轴于,计算,,,,根据勾股定理计算得到答案.【详解】如图所示:切点为,连接,作轴于,,故,在中,,故,故,,根据勾股定理:,解得.故选:.【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.2、A【解析】
由已知,设.可得.于是可得,进而得出结论.【详解】解:依题意,设.则.,.设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.则,.故选:A.【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.3、C【解析】
写出命题“假设时该命题成立,则时该命题也成立”的逆否命题,结合原命题与逆否命题的真假性一致进行判断.【详解】由逆否命题可知,命题“假设时该命题成立,则时该命题也成立”的逆否命题为“假设当时该命题不成立,则当时该命题也不成立”,由于当时,该命题不成立,则当时,该命题也不成立,故选:C.【点睛】本题考查逆否命题与原命题等价性的应用,解题时要写出原命题的逆否命题,结合逆否命题的等价性进行判断,考查逻辑推理能力,属于中等题.4、A【解析】
将圆的方程化简成标准方程,再根据垂径定理求解即可.【详解】圆的标准方程,圆心坐标为,半径为,因为直线与圆相交所得弦长为,所以直线过圆心,得,即.故选:A【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题.5、A【解析】
根据题意,分析可得函数的图象关于对称且在上为减函数,则不等式等价于,解得的取值范围,即可得答案.【详解】解:因为函数为偶函数,所以函数的图象关于对称,因为对任意,,都有,所以函数在上为减函数,则,解得:.即实数的取值范围是.故选:A.【点睛】本题考查函数的对称性与单调性的综合应用,涉及不等式的解法,属于综合题.6、A【解析】
求出,对分类讨论,求出单调区间和极值点,结合三次函数的图像特征,即可求解.【详解】,若,,在单调递增,且,在不存在零点;若,,在内有且只有一个零点,.故选:A.【点睛】本题考查函数的零点、导数的应用,考查分类讨论思想,熟练掌握函数图像和性质是解题的关键,属于中档题.7、D【解析】
求出展开项中的常数项及含的项,问题得解。【详解】展开项中的常数项及含的项分别为:,,所以展开式中的常数项为:.故选:D【点睛】本题主要考查了二项式定理中展开式的通项公式及转化思想,考查计算能力,属于基础题。8、A【解析】因为,所以,即周期为4,因为为奇函数,所以可作一个周期[-2e,2e]示意图,如图在(0,1)单调递增,因为,因此,选A.点睛:函数对称性代数表示(1)函数为奇函数,函数为偶函数(定义域关于原点对称);(2)函数关于点对称,函数关于直线对称,(3)函数周期为T,则9、C【解析】
根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.10、D【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.11、B【解析】
先化简的二项展开式中第项,然后直接求解即可【详解】的二项展开式中第项.令,则,∴,∴(舍)或.【点睛】本题考查二项展开式问题,属于基础题12、B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
判断的奇偶性和单调性,原不等式转化为,运用单调性,可得到所求解集.【详解】令,易知函数为奇函数,在R上单调递增,,即,∴∴,即x>故答案为:【点睛】本题考查函数的奇偶性和单调性的运用:解不等式,考查转化思想和运算能力,属于中档题.14、9【解析】
已知由余弦定理即可求得,由可求得,即可求得,利用正弦定理即可求得结果.【详解】由余弦定理和,可得,得,由,,,由正弦定理,得.故答案为:.【点睛】本题考查正余弦定理在解三角形中的应用,难度一般.15、【解析】
函数的定义域为,求出导函数,利用曲线与曲线公共点为由于在公共点处有共同的切线,解得,,联立解得的值.【详解】解:函数的定义域为,,,设曲线与曲线公共点为,由于在公共点处有共同的切线,∴,解得,.由,可得.联立,解得.故答案为:.【点睛】本题考查函数的导数的应用,切线方程的求法,考查转化思想以及计算能力,是中档题.16、【解析】
根据题意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【详解】因为,则,由余弦定理得:,当且仅当时取等号,又因为,,所以.故答案为:.【点睛】本题考查余弦定理和正弦定理的应用,以及基本不等式求最值,考查计算能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)详见解析.【解析】
(1)由短轴长可知,设,,由设而不求法作差即可求得,将相应值代入即求得,椭圆方程可求;(2)考虑特殊位置,即直线与轴垂直时候,成立,当直线斜率存在时,设出直线方程,与椭圆联立,结合中点坐标公式,弦长公式,得到与的关系,将表示出来,结合基本不等式求最值,证明最后的结果【详解】解:(1)由已知,得由,两式相减,得根据已知条件有,当时,∴,即∴椭圆的标准方程为(2)当直线斜率不存在时,,不等式成立.当直线斜率存在时,设由得∴,∴由化简,得∴令,则当且仅当时取等号∴∵∴当且仅当时取等号综上,【点睛】本题为直线与椭圆的综合应用,考查了椭圆方程的求法,点差法处理多未知量问题,能够利用一元二次方程的知识转化处理复杂的计算形式,要求学生计算能力过关,为较难题18、(Ⅰ)详见解析;(Ⅱ).【解析】试题分析:(Ⅰ)连接交于,得,所以面,又,得面,即可利用面面平行的判定定理,证得结论;(Ⅱ)如图,以O为坐标原点,建立空间直角坐标系,求的平面的一个法向量,利用向量和向量夹角公式,即可求解与平面所成角的正弦值.试题解析:(Ⅰ)连接BD交AC于O,易知O是BD的中点,故OG//BE,BE面BEF,OG在面BEF外,所以OG//面BEF;又EF//AC,AC在面BEF外,AC//面BEF,又AC与OG相交于点O,面ACG有两条相交直线与面BEF平行,故面ACG∥面BEF;(Ⅱ)如图,以O为坐标原点,分别以OC、OD、OF为x、y、z轴建立空间直角坐标系,则,,,,,,,设面ABF的法向量为,依题意有,,令,,,,,直线AD与面ABF成的角的正弦值是.19、(1)分层抽样,简单随机抽样(抽签亦可)(2)有(3)分布列见解析,【解析】
(1)根据题意可以选用分层抽样法,或者简单随机抽样法.(2)由已知条件代入公式计算出结果,进而可以得到结果.(3)由已知条件计算出的分布列,进而求出的数学期望.【详解】(1)分层抽样,简单随机抽样(抽签亦可).(2)将列联表中的数据代入公式计算得所以有的把握认为“此普查小区的入户登记是否顺利与普查对象的类别有关”.(3)以频率作为概率,随机选择1家个体经营户作为普查对象,入户登记顺利的概率为.可取0,1,2,3,计算可得的分布列为:0123【点睛】本题考查了运用数学模型解答实际生活问题,运用合理的抽样方法,计算以及数据的分布列和数学期望,需要正确运用公式进行求解,本题属于常考题型,需要掌握解题方法.20、(1)(2)定值为0.【解析】
(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高考物理总复习专题三牛顿运动定律第2讲牛顿第二定律、两类动力学问题练习含答案
- 建筑场地土方运输填筑
- 外墙真石漆工程劳务分包
- 高中英语 Unit 4 Wildlife protection Speaking and writing教案 新人教版必修2
- 八年级物理下册 第十二章 简单机械12.2 滑轮第2课时 轮轴和斜面教案 (新版)新人教版
- 高中化学 第一册 第一章 打开原子世界的大门 1.2 同位素和相对原子质量教案 沪科版
- 2024-2025版新教材高中语文 第三单元 7 短歌行 归园田居(其一)教案 新人教版必修上册
- 2023九年级数学下册 第27章 圆27.3 圆中的计算问题第1课时 弧长和扇形面积的计算教案 (新版)华东师大版
- 2024年秋八年级历史上册 第六单元 中华民族的抗日战争 第18课 从九一八事变到西安事变教案 新人教版
- 有关圆周率的数学家
- 神州数码dcfw1800系列安全网关命令手册40r4c
- 《创伤失血性休克中国急诊专家共识(2023)》解读课件
- 补贴资金管理办法
- 食品安全管理制度可打印【7】
- 2024-2030年中国膜行业市场发展分析及趋势前景与投资战略研究分析报告
- (新版)粮油仓储管理员职业鉴定理论考试题库(含答案)
- 2024-2025学年沪科版中考数学模拟试卷及答案
- 2024发电企业安全风险分级管控和隐患排查治理管理办法
- 2024-2030年中国甲硫基乙醛肟行业市场行情监测及发展前景研判报告
- 《普通高等学校军事课教程》课件第5章
- 第四章运动和力的关系单元教学设计
评论
0/150
提交评论