数字图像处理与Python实现-课件第四章-图像变换_第1页
数字图像处理与Python实现-课件第四章-图像变换_第2页
数字图像处理与Python实现-课件第四章-图像变换_第3页
数字图像处理与Python实现-课件第四章-图像变换_第4页
数字图像处理与Python实现-课件第四章-图像变换_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字图像处理2022-2023-2课程内容入门认识第7章图像压缩第8章图像分割基本操作应用第9章图像水印第10章指纹识别第11章深度学习综合案例24.1图像几何变换获取图像变换域的某些性质,对其进行处理;一方面能够更有效地反映图像在空间域难以获取的特征;另一方面也可使能量集中在少量数据上,更有利于图像的存储、传输及处理。图像的变换域分析常用:傅里叶变换、DCT变换、小波变换广泛应用于图像分析、滤波、增强、压缩等应用中。第四章图像变换4.1图像几何变换4.2图像离散傅里叶变换4.3图像余弦变换平移、镜像、缩放、转置、旋转、剪切4.1.1图像的平移P0平移到P1

4.1.1图像的平移4.1.2图像的镜像分为水平镜像和垂直镜像水平镜像:以原图像垂直中轴线为中心,将图像分为左右两部分,进行左右对换,特点:每行像素的处理方式相同,行顺序不发生变化,只是每一行的像素信息顺序是从左到右进行颠倒。

垂直镜像:以原图像水平中轴线为中心轴将图像分为上下两部分,进行上下对换4.1.2图像的镜像垂直镜像:以原图像水平中轴线为中心轴将图像分为上下两部分,进行上下对换

4.1.2图像的镜像4.1.3图像的缩放垂直镜像:将给定的图像在x轴方向按比例缩放fx倍,在y轴方向按比例缩放fy倍fx=fy,为图像的全比例缩放。fx≠fy,图像产生几何畸变。4.1.3图像的缩放图像缩放:将给定的图像在x轴方向按比例缩放fx倍,在y轴方向按比例缩放fy倍fx=fy,为图像的全比例缩放。fx≠fy,图像产生几何畸变。4.1.3图像的缩放等尺寸显示时,请仔细观察缩小后的图像会丢失一部分原图像信息,会出现模糊化放大后的图像,增加了原图像信息,显示更清晰建议采用原图像的纵横比,缩放后能更好地保持图像信息4.1.4图像的转置图像的行列坐标互换,图像的大小会随之改变,即高度和宽度互换。

4.1.5图像的旋转以图像中心为原点,将所有像素都旋转一个相同角度使用cv2.getRotationMatrix2D()函数生成旋转矩阵,返回旋转矩阵,使用cv2.warpAffine()实现图像旋转。实现方法:旋转后图像尺寸与原始相同。缩放比例及旋转程度不同,可能会造成部分信息丢失。避免丢失需要增加计算旋转后图像的外接矩形框尺寸。4.1.6图像的剪切只对部分图像感兴趣切片指定坐标的顺序为[y0:y1,x0:x1]数组切片方式4.1.7图像的插值思考:图像几何变换本质?将像素的坐标通过某种函数映射关系,映射到其他位置。包括:向前映射、向后映射向前映射:由输入图像的坐标计算其在输出图像中的位置。思考:计算可以得到输出图像中非整数点坐标。整数坐标值怎么求?整数点的像素值周围会有很多输入像素点映射过来,将这些像素值叠加,得到输出图像整数点位置的像素值,无法直接得到输出图像某一点的像素值。4.1.7图像的插值向后映射:图像填充映射直接计算输出图像整数点(x’,y’)变换前在输入图像上的位置(x,y)。非整数点坐标:

利用其周围整数点位置的输入图像像素值进行插值,得到该点的像素值。逐个考虑输出图像中的像素,不会产生计算浪费。4.1.7图像的插值常见图像插值:最近邻插值

双线性插值最近邻插值按照四舍五入法找到最相邻的整数点坐标,以其像素值作为插值后的输出P点在A区,f(i,j),P点在B区,f(i+1,j),P点在C区,f(i,j+1),P点在D区,f(i+1,j+1)。图像质量不高,放大有很严重的马赛克,缩小有很严重的失真。如果输出图像该点的像素值根据输入图像中周围四个真实的点按照一定规律计算,能达到更好的效果4.1.7图像的插值常见图像插值:最近邻插值

双线性插值双线性插值输入图像中虚拟点四周的四个真实像素值共同决定输出对应点像素值缺点:计算量较大;具有低通滤波器性质,损失部分高频分量,图像轮廓在一定程度上变模糊。优点:比最近邻插值法输出图像质量高,不会出现像素值不连续的的情况。第四章图像变换4.1图像几何变换4.2图像离散傅里叶变换4.3图像余弦变换平移、镜像、缩放、转置、旋转、剪切4.2图像离散傅里叶变换引入傅里叶变换的作用:1、信号的频域的表示跟时域的表示相比更加简洁明了2、便于从能量的角度看待信号3、简化了信号处理中所需要的计算量s(x)是由多个正弦信号叠加构成的波型函数4.2.1连续傅里叶变换f(x)为实变量x的连续函数,则傅里叶变换定义为:f(x)必须满足:只有有限个间断点、有限个极值和绝对可积的条件实序列傅里叶变换的实部和虚部分别为()偶函数和奇函数奇函数和偶函数奇函数和奇函数偶函数和偶函数ABCD提交单选题1分4.2.1连续傅里叶变换推广到二维函数f(x,y),连续可积的连续函数,则傅里叶变换定义为:4.2.2离散傅里叶变换(DFT)对f(x)进行采样将其离散化,则其傅里叶变换定义为:对比连续傅里叶变换离散傅里叶反变换(IDFT):4.2.2离散傅里叶变换(DFT)DFT在图像变换中的应用一般采用快速傅里叶变换(FFT),大大减少计算量4.2.3DFT

的性质(1)可分离性二维傅里叶变换可分离成二次一维傅里叶变换先沿f(x,y)的列方向求一维离散傅里叶变换得到F(x,v),再对F(x,v)沿行方向求一维离散傅里叶变换得到F(u,v)。上述过程顺序可调,结果不变。反变换的分离过程类似。4.2.3DFT

的性质(2)周期性和共轭对称性正变换后得到的F(u,v)或反变换后得到的f(x,y)都是周期为N的周期性重复离散函数。由此,只需根据在任意周期内的N个值就可以从F(u,v)得到f(x,y)。。共轭对称性:周期性:说明变换后的幅值是以原点为中心对称。因此,在求一个周期内的值时,只需求出半个周期,另半个周期对称可得,大大减少计算量。4.2.3DFT

的性质(3)平移性将f(x,y)乘以一个指数项,=

把DFT后的F(u,v)的频域中心移动到新位置,不影响DFT的幅值。类似地,将F(u,v)乘以一个指数项,=把IDFT后的f(x,y)的空域中心移动到新的位置。4.2.3DFT

的性质(4)旋转不变性如果f(r,θ)在空间域旋转θ0角度,则其DFT在频域上也旋转同一角度θ0。(5)加法分配律(6)线性和比例性F{af1(x,y)+bf2(x,y)

}=aF1(u,v)+bF2(u,v)4.2.3DFT

的性质(7)平均值

(8)离散卷积定理4.2.4DFT

的Python实现第四章图像变换4.1图像几何变换4.2图像离散傅里叶变换4.3图像余弦变换平移、镜像、缩放、转置、旋转、剪切4.3图像离散余弦变换(DCT)实偶函数的傅里叶变换只含实数部分的余弦项,构造一种实数域的变换—离散余弦变换。回顾傅里叶变换:与傅里叶变换相关的一种变换。4.3.1一维离散余弦变换定义f(x)(x=0,1,2,3,…,N-1)为长度为N点的离散序列。(u=1,2,3,…,N-1,x=0,1,2,…,N-1)反变换4.3.2二维离散余弦变换定义(一维扩二维)反变换4.3.3离散余弦变换的Python实现Dct系数4.3.3离散余弦变换的Python实现Dct系数(1)左上角—>右下角(低频->中频->高频),系数绝对值不断变小,高频接近零,能量集中在低频。(2)低频系数

近似;

高频系数

细节。4.3.3离散余弦变换的Python实现Dct系数4.3.3离散余弦变换的Python实现Dct用于压缩4.3.3离散余弦变换的Python实现Dct用于压缩4.3.3离散余弦变换的Python实现4.3.3离散余弦变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论