第15章平面直角坐标系(单元提升卷)-2021-2022学年七年级数学下学期考试满分全攻略(沪教版)(解析版)_第1页
第15章平面直角坐标系(单元提升卷)-2021-2022学年七年级数学下学期考试满分全攻略(沪教版)(解析版)_第2页
第15章平面直角坐标系(单元提升卷)-2021-2022学年七年级数学下学期考试满分全攻略(沪教版)(解析版)_第3页
第15章平面直角坐标系(单元提升卷)-2021-2022学年七年级数学下学期考试满分全攻略(沪教版)(解析版)_第4页
第15章平面直角坐标系(单元提升卷)-2021-2022学年七年级数学下学期考试满分全攻略(沪教版)(解析版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第15章平面直角坐标系(单元提升卷)(满分100分,完卷时间90分钟)考生注意:1.本试卷含三个大题,共24题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出解题的主要步骤.一、选择题(本大题共6小题,每题3分,满分18分)一.选择题(共6小题)1.在平面直角坐标系中,已知点P的坐标是(﹣1,﹣2),则点P关于原点对称的点的坐标是()A.(﹣1,2) B.(1,﹣2) C.(1,2) D.(2,1)【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),据此即可求得点P关于原点的对称点的坐标.【解答】解:∵点P关于x轴的对称点坐标为(﹣1,﹣2),∴点P关于原点的对称点的坐标是(1,2).故选:C.【点评】此题主要考查了关于原点对称点的坐标性质,这一类题目是需要识记的基础题,要熟悉关于原点对称点的横纵坐标变化规律.2.△ABO与△A1B1O在平面直角坐标系中的位置如图所示,它们关于点O成中心对称,其中点A(4,2),则点A1的坐标是()A.(4,﹣2) B.(﹣4,﹣2) C.(﹣2,﹣3) D.(﹣2,﹣4)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵A和A1关于原点对称,A(4,2),∴点A1的坐标是(﹣4,﹣2),故选:B.【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.3.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33 B.﹣33 C.﹣7 D.7【分析】先根据关于原点对称的点的坐标特点:横坐标与纵坐标都互为相反数,求出a与b的值,再代入计算即可.【解答】解:∵点P(﹣20,a)与点Q(b,13)关于原点对称,∴a=﹣13,b=20,∴a+b=﹣13+20=7.故选:D.【点评】本题主要考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4.在直角坐标系中,将点(﹣2,3)关于原点的对称点向左平移2个单位长度得到的点的坐标是()A.(4,﹣3) B.(﹣4,3) C.(0,﹣3) D.(0,3)【分析】根据关于原点的点的横坐标互为相反数,纵坐标互为相反数,可得关于原点的对称点,根据点的坐标向左平移减,可得答案.【解答】解:在直角坐标系中,将点(﹣2,3)关于原点的对称点是(2,﹣3),再向左平移2个单位长度得到的点的坐标是(0,﹣3),故选:C.【点评】本题考查了点的坐标,关于原点的点的横坐标互为相反数,纵坐标互为相反数;点的坐标向左平移减,向右平移加,向上平移加,向下平移减.5.在平面直角坐标系中,若点P(m,m﹣n)与点Q(﹣2,3)关于原点对称,则点M(m,n)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,则m=2且n=﹣3,从而得出点M(m,n)所在的象限.【解答】解:根据平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,∴m=2且m﹣n=﹣3,∴m=2,n=5∴点M(m,n)在第一象限,故选:A.【点评】本题考查了平面内两点关于原点对称的点,横坐标与纵坐标都互为相反数,该题比较简单.6.如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3 B.△ABC绕点C顺时针旋转90°,再向下平移1 C.△ABC绕点C逆时针旋转90°,再向下平移1 D.△ABC绕点C逆时针旋转90°,再向下平移3【分析】观察图形可以看出,Rt△ABC通过变换得到Rt△ODE,应先旋转然后平移即可.【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.【点评】本题考查的是坐标与图形变化旋转和平移的知识,掌握旋转和平移的概念和性质是解题的关键.二、填空题(本大题共12题,每题2分,满分24分)7.如图,△ABO中,AB⊥OB,AB=,OB=1,把△ABO绕点O旋转120°后,得到△A1B1O,则点A1的坐标为(﹣2,0)或(1,﹣).【分析】在Rt△OAB中利用勾股定理计算出OA=2,则利用含30度的直角三角形三边的关系得∠A=30°,所以∠AOB=60°,然后分类讨论:当△ABO绕点O逆时针旋转120°后,点A的对应点A′落在x轴的负半轴上,如图,OA′=OA=2,易得A′的坐标为(﹣2,0);当△ABO绕点O顺时针旋转120°后,点A的对应点A1落在第四象限,如图,则OA1=OA=2,∠AOA1=120°,∠BOA1=30°,利用三角函数可求出A1的纵坐标和横坐标.【解答】解:在Rt△OAB中,∵AB=,OB=1,∴OA==2,∴∠A=30°,∴∠AOB=60°,①当△ABO绕点O逆时针旋转120°后,点A的对应点A1落在x轴的负半轴上,如图,OA1=OA=2,此时A1的坐标为(﹣2,0);②当△ABO绕点O顺时针旋转120°后,点A的对应点A1′落在第三象限,如图,则OA1′=OA=2,∠AOA1′=120°,∵∠AOB=60°,∴∠BOA1′=60°,∴点A1′的横坐标为OA1′•cos60°=2×=1,纵坐标为OA1′•sin60°=2×=,A1′的坐标为(1,﹣).综上所述,A1的坐标为(﹣2,0)或(1,﹣).故答案为(﹣2,0)或(1,﹣).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.8.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是A′(5,2).【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故答案为:A′(5,2).【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.9.已知点M(3,﹣2),将它先向左平移4个单位,再向上平移3个单位后得到点N,则点N的坐标是(﹣1,1).【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【解答】解:原来点的横坐标是3,纵坐标是﹣2,向左平移4个单位,再向上平移3个单位得到新点的横坐标是3﹣4=﹣1,纵坐标为﹣2+3=1.则点N的坐标是(﹣1,1).故答案填:(﹣1,1).【点评】解题关键是要懂得左右平移点的纵坐标不变,而上下平移时点的横坐标不变,平移变换是中考的常考点,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.已知点P(3,2),则点P关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).【分析】根据关于y轴对称的点的横坐标互为相反数,纵坐标相同;关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(3,2)关于y轴的对称点P1的坐标是(﹣3,2),点P关于原点O的对称点P2的坐标是(﹣3,﹣2).故答案为:(﹣3,2);(﹣3,﹣2).【点评】本题考查了关于原点对称点点的坐标,关于y轴对称的点的坐标,熟记对称点的坐标特征是解题的关键.11.若点(a,1)与(﹣2,b)关于原点对称,则ab=.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即:求关于原点的对称点,横纵坐标都变成相反数.记忆方法是结合平面直角坐标系的图形记忆.【解答】解:∵点(a,1)与(﹣2,b)关于原点对称,∴b=﹣1,a=2,∴ab=2﹣1=.故答案为:.【点评】此题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆时要结合平面直角坐标系.12.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°,得到的点A′的坐标为(﹣5,4).【分析】首先根据点A的坐标求出OA的长度,然后根据旋转变换只改变图形的位置,不改变图形的形状与大小,可得OA′=OA,据此求出点A′的坐标即可.【解答】解:如图,过点A作AC⊥y轴于点C,作AB⊥x轴于点B,过A′作A′E⊥y轴于点E,作A′D⊥x轴于点D,,∵点A(4,5),∴AC=4,AB=5,∵点A(4,5)绕原点逆时针旋转90°得到点A′,∴A′E=AB=5,A′D=AC=4,∴点A′的坐标是(﹣5,4).故答案为:(﹣5,4).【点评】此题主要考查了坐标与图形变换﹣旋转,要熟练掌握,解答此题的关键是要明确:旋转变换只改变图形的位置,不改变图形的形状与大小.13.已知A点的坐标为(﹣1,3),将A点绕坐标原点顺时针90°,则点A的对应点的坐标为(3,1).【分析】过A作AC⊥y轴于C,过A'作A'D⊥x轴于D,根据旋转求出∠A=∠A'OD,证△ACO≌△ODA',推出A'D=OC=1,OD=CA=3,即可根据题意作出A点绕坐标原点顺时针90°后的点,然后写出坐标.【解答】解:过A作AC⊥y轴于C,过A'作A'D⊥y轴于D,∵∠AOA'=90°,∠ACO=90°,∴∠AOC+∠A'OD=90°,∠A+∠AOC=90°,∴∠A=∠A'OD,在△AC0和△ODA'中,,∴△AC0≌△ODA'(AAS),∴A'D=OC=1,OD=CA=3,∴A'的坐标是(3,1).故答案为:(3,1).【点评】本题主要考查对坐标与图形变换﹣旋转,全等三角形的性质和判定等知识点的理解和掌握,能正确画出图形并求出△AC0≌△ODA'是解此题的关键.14.设点M(1,2)关于原点的对称点为M′,则M′的坐标为(﹣1,﹣2).【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可直接得到答案.【解答】解:点M(1,2)关于原点的对称点M′的坐标为(﹣1,﹣2),故答案为:(﹣1,﹣2).【点评】此题主要考查了关于原点对称的点的坐标特点,关键是熟练掌握点的坐标的变化规律.15.点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3).【分析】两点关于原点对称,横坐标互为相反数,纵坐标互为相反数.【解答】解:∵5的相反数是﹣5,﹣3的相反数是3,∴点P(5,﹣3)关于原点的对称点的坐标为(﹣5,3),故答案为:(﹣5,3).【点评】主要考查两点关于原点对称的坐标的特点:两点关于原点对称,两点的横坐标互为相反数,纵坐标互为相反数,用到的知识点为:a的相反数为﹣a.16.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).【分析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【解答】解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点评】本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.17.在平面直角坐标系中,点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).【分析】根据关于坐标原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:点P(5,﹣3)关于原点对称的点的坐标是(﹣5,3).故答案为:(﹣5,3).【点评】本题考查了关于原点对称的点的坐标,熟记关于坐标原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.18.若将等腰直角三角形AOB按如图所示放置,OB=2,则点A关于原点对称的点的坐标为(﹣1,﹣1).【分析】过点A作AD⊥OB于点D,根据等腰直角三角形的性质求出OD及AD的长,故可得出A点坐标,再由关于原点对称的点的坐标特点即可得出结论.【解答】解:过点A作AD⊥OB于点D,∵△AOB是等腰直角三角形,OB=2,∴OD=AD=1,∴A(1,1),∴点A关于原点对称的点的坐标为(﹣1,﹣1).故答案为(﹣1,﹣1).【点评】本题考查的是关于原点对称的点的坐标特点,熟知等腰直角三角形的性质是解答此题的关键.三、解答题(58分)19.如图,已知在平面直角坐标系xOy中,点A(﹣4,0),点B(2n﹣10,m+2),当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合.(1)求点B的坐标;(2)将点B向右平移3个单位后得到的点记为点C,点C恰好在直线x=b上,点D在直线x=b上,当△BCD是等腰三角形时,求点D的坐标.【分析】(1)根据平移得点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位,坐标为(﹣4+m,n),根据平移后可与点B重合可得方程组,解方程组即可;(2)根据平移得点C(1,4).由点C恰好在直线x=b上得x=1,从而可得BC⊥CD,设点D的坐标为(1,x),根据等腰三角形的定义得BC=CD,可得1﹣(﹣2)=|x﹣4|,解方程即可求解.【解答】解:∵点A(﹣4,0),点B(2n﹣10,m+2),且当点A向右平移m(m>0)个单位,再向上平移n(n>0)个单位时,可与点B重合,∴﹣4+m=2n﹣10,且n=m+2,解得m=2,n=4,∴点B的坐标为(﹣2,4);(2)由(1)知点B(﹣2,4),∵点B向右平移3个单位后得到的点记为点C,∴点C(1,4).∵点C恰好在直线x=b上,∴x=1,∵点D在直线x=1上,∴BC⊥CD,设点D的坐标为(1,x),∵△BCD是等腰三角形,∴BC=CD,∴1﹣(﹣2)=|x﹣4|,即|x﹣4|=3,∴x=7或1,∴点D的坐标为(1,1)或(1,7).【点评】本题考查的是一次函数图象上点的坐标特点,等腰三角形的性质,平移的性质,求出点B和点C的坐标是解答此题的关键.20.如图,在直角坐标平面内,已知点A的坐标(﹣2,0).(1)图中点B的坐标是(﹣3,4);(2)点B关于原点对称的点C的坐标是(3,﹣4);点A关于y轴对称的点D的坐标是(2,0);(3)四边形ABDC的面积是16;(4)在y轴上找一点F,使S△ADF=S△ABC,那么点F的所有可能位置是(0,4)或(0,﹣4).【分析】(1)根据坐标的意义即可得出点B的坐标;(2)根据关于原点对称的两个点坐标之间的关系可得出点B关于原点对称的点C的坐标,同理根据关于y轴对称的两个点坐标之间的关系得出点A关于y对称点D的坐标;(3)平行四边形ABCD的面积等于三角形ABD面积的2倍即可,根据坐标可求出三角形ABD的面积;(4)三角形ABC的面积等于平行四边形ABCD面积的一半,也等于三角形ABD的面积,根据面积公式求出OF的长即可.【解答】解:如图,(1)过点B作x轴的垂线,垂足所对应的数为﹣3,因此点B的横坐标为﹣3,过点B作y轴的垂线,垂足所对应的数为4,因此点B的纵坐标为4,所以点B(﹣3,4);故答案为:(﹣3,4);(2)由于关于原点对称的两个点坐标纵横坐标均为互为相反数,所以点B(﹣3,4)关于原点对称点C(3,﹣4),由于关于y轴对称的两个点,其横坐标互为相反数,其纵坐标不变,所以点A(﹣2,0)关于y轴对称点D(2,0),故答案为:(3,﹣4),(2,0);(3)S平行四边形ABCD=2S△ABD=2××4×4=16,故答案为:16;(4)因为S△ABC=S平行四边形ABCD=8=S△ADF,所以AD•OF=8,∴OF=4,又∵点F在y轴上,∴点F(0,4)或(0,﹣4),故答案为:(0,4)或(0,﹣4).【点评】本题考查点的坐标,关于x轴、y轴、原点对称的点坐标的关系,以及利用坐标求相应图形的面积,将坐标转化为线段的长是解决问题的关键.21.如图,直角坐标平面内有△OAB,其中点A的坐标为(2,3),点B的坐标为(6,﹣2),将△OAB绕点O逆时针旋转90°得到△OA'B',点A、B分别转到A'.B'.(1)在图中画出△OA'B',(2)连接AB',求△OAB的面积.【分析】(1)利用旋转变换的性质分别作出A,B的对应点A′,B′即可;(2)利用三角形面积公式求解即可.【解答】解:(1)如图,△OA'B'即为所求;(2)△OAB′的面积=×3×2=3.【点评】本题考查作图﹣旋转变换,三角形的面积等知识,解题的关键是掌握旋转变换的性质,属于中考常考题型.22.如图,在直角坐标平面内,A、B、C三点坐标分别为(﹣2,0)、(2,0)、(0,2),已知点D(1,1)在线段BC上,联结DA交y轴于点G,过点C作CE⊥AD交AB于点F,垂足为点E.(1)求△DAB的面积;(2)将图形补画完整,并说明OG=OF的理由.【分析】(1)将AB看成底,D到x轴的距离看成高,用三角形的面积公式计算即可;(2)证明△OAG≌△OCF即可得出对应边相等.【解答】解:(1)将AB看作△ABD的底边,∵A(﹣2,0)、B(2,0),∴AB=4,∵D(1,1),∴D到x轴的距离为1,∴,(2)如图,∵∠AGO=∠CGE,∠AOG=∠CEG=90°,在△OAG和△OCF中,,∴△OAG≌△OCF(ASA),∴OG=OF.【点评】本题主要考查三角形的面积公式和全等三角形的判定,计算三角形的面积关键在于找到适当的底边和高,判定全等三角形一般需要三个条件,可先将已知的条件写出来,然后在分析需要角的条件还是边的条件.23.如图,在平面直角坐标系中,O为坐标原点,△ABC的三个顶点坐标分别为A(1,1),B(1,3),C(4,1).(1)△A1B1C1与△ABC关于原点O对称(其中A1与A对应,B1与B对应),写出点A1、B1、C1的坐标,并在右图中画出△A1B1C1;(2)将△ABC向下平移m个单位,得到△DEF(其中A与D对应,B与E对应),如果梯形AEFC的面积等于△ABC的面积的2倍,那么m=3.【分析】(1)利用中心对称的性质分别作出A,B,C的对应点A1,B1,C1即可.(2)根据梯形AEFC的面积等于△ABC的面积的2倍,构建方程求解即可.【解答】解:(1)点A1(﹣1,﹣1),B1(﹣1,﹣3),C1(﹣4,﹣3),△A1B1C1即为所求.(2)△ABC向下平移m个单位,得到△DEF

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论