版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市昌平区2024届中考试题猜想数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若实数a,b满足|a|>|b|,则与实数a,b对应的点在数轴上的位置可以是()A. B. C. D.2.将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是()A. B.C. D.3.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m)8.28.08.27.57.8A.8.2,8.2 B.8.0,8.2 C.8.2,7.8 D.8.2,8.04.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣35.﹣18的倒数是()A.18 B.﹣18 C.- D.6.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴().
…
…
…
…A.只有一个交点 B.有两个交点,且它们分别在轴两侧C.有两个交点,且它们均在轴同侧 D.无交点7.一、单选题如图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D8.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20 B.27 C.35 D.409.函数的图象上有两点,,若,则()A. B. C. D.、的大小不确定10.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是()A.= B.= C.= D.=11.下列计算正确的是()A.2x+3x=5x B.2x•3x=6x C.(x3)2=5 D.x3﹣x2=x12.下列图形是中心对称图形的是()A. B. C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过菱形OABC中心E点,则k的值为_____.14.如图,△ABC≌△ADE,∠EAC=40°,则∠B=_______°.15.如图,中,,,,将绕点逆时针旋转至,使得点恰好落在上,与交于点,则的面积为_________.16.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.17.如图,矩形ABCD的对角线BD经过的坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=的图象上,若点A的坐标为(﹣2,﹣3),则k的值为_____.18.在平面直角坐标系中,点O为原点,平行于x轴的直线与抛物线L:y=ax1相交于A,B两点(点B在第一象限),点C在AB的延长线上.(1)已知a=1,点B的纵坐标为1.如图1,向右平移抛物线L使该抛物线过点B,与AB的延长线交于点C,AC的长为__.(1)如图1,若BC=AB,过O,B,C三点的抛物线L3,顶点为P,开口向下,对应函数的二次项系数为a3,=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间(单位:分钟)是关于x的一次函数,其关系如下表:地铁站ABCDEX(千米)891011.513(分钟)1820222528(1)求关于x的函数表达式;李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.20.(6分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:(1)△ABE≌△CDF;(2)四边形BFDE是平行四边形.21.(6分)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发的时间x(分)之间的关系如图中折线OA-AB-BC-CD所示.(1)求线段AB的表达式,并写出自变量x的取值范围;(2)求乙的步行速度;(3)求乙比甲早几分钟到达终点?22.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).请画出△ABC向左平移5个单位长度后得到的△ABC;请画出△ABC关于原点对称的△ABC;在轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.23.(8分)由于雾霾天气对人们健康的影响,市场上的空气净化器成了热销产品.某公司经销一种空气净化器,每台净化器的成本价为200元.经过一段时间的销售发现,每月的销售量y(台)与销售单价x(元)的关系为y=﹣2x+1.(1)该公司每月的利润为w元,写出利润w与销售单价x的函数关系式;(2)若要使每月的利润为40000元,销售单价应定为多少元?(3)公司要求销售单价不低于250元,也不高于400元,求该公司每月的最高利润和最低利润分别为多少?24.(10分)如图,在平面直角坐标系xOy中,已知正比例函数与一次函数的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交和的图像于点B、C,连接OC,若BC=OA,求△OBC的面积.25.(10分)若关于的方程无解,求的值.26.(12分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?27.(12分)如图,点C在线段AB上,AD∥EB,AC=BE,AD=BC,CF平分∠DCE.求证:CF⊥DE于点F.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解析】
根据绝对值的意义即可解答.【详解】由|a|>|b|,得a与原点的距离比b与原点的距离远,只有选项D符合,故选D.【点睛】本题考查了实数与数轴,熟练运用绝对值的意义是解题关键.2、B【解析】
抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.
∴所得图象的解析式为:y=(x+1)1-1;
故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.3、D【解析】
解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1.其中8.1出现1次,出现次数最多,8.2排在第三,∴这组数据的众数与中位数分别是:8.1,8.2.故选D.【点睛】本题考查众数;中位数.4、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.5、C【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-18=1,∴﹣18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.6、B【解析】
根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.7、D【解析】
根据全等三角形的性质和已知图形得出即可.【详解】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.【点睛】本题考查了全等三角形的性质,能熟记全等三角形的性质的内容是解此题的关键,注意:全等三角形的对应角相等,对应边相等.8、B【解析】试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B.考点:规律型:图形变化类.9、A【解析】
根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系.【详解】解:∵y=-1x1-8x+m,∴此函数的对称轴为:x=-=-=-1,∵x1<x1<-1,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y1.故选A.【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.10、D【解析】
根据平行线分线段成比例定理的逆定理,当或时,,然后可对各选项进行判断.【详解】解:当或时,,
即或.
所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.11、A【解析】
依据合并同类项法则、单项式乘单项式法则、积的乘方法则进行判断即可.【详解】A、2x+3x=5x,故A正确;B、2x•3x=6x2,故B错误;C、(x3)2=x6,故C错误;D、x3与x2不是同类项,不能合并,故D错误.故选A.【点睛】本题主要考查的是整式的运算,熟练掌握相关法则是解题的关键.12、B【解析】
根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.考点:中心对称图形.【详解】请在此输入详解!二、填空题:(本大题共6个小题,每小题4分,共24分.)13、8【解析】
根据反比例函数的性质结合点的坐标利用勾股定理解答.【详解】解:菱形OABC的顶点A的坐标为(-3,-4),OA=OC=则点B的横坐标为-5-3=-8,点B的坐标为(-8,-4),点C的坐标为(-5,0)则点E的坐标为(-4,-2),将点E的坐标带入y=(x<0)中,得k=8.给答案为:8.【点睛】此题重点考察学生对反比例函数性质的理解,掌握坐标轴点的求法和菱形性质是解题的关键.14、1°【解析】
根据全等三角形的对应边相等、对应角相等得到∠BAC=∠DAE,AB=AD,根据等腰三角形的性质和三角形内角和定理计算即可.【详解】∵△ABC≌△ADE,∴∠BAC=∠DAE,AB=AD,∴∠BAD=∠EAC=40°,∴∠B=(180°-40°)÷2=1°,故答案为1.【点睛】本题考查的是全等三角形的性质和三角形内角和定理,掌握全等三角形的对应边相等、对应角相等是解题的关键.15、【解析】
首先证明△CAA′是等边三角形,再证明△A′DC是直角三角形,在Rt△A′DC中利用含30度的直角三角形三边的关系求出CD、A′D即可解决问题.【详解】在Rt△ACB中,∠ACB=90°,∠B=30°,
∴∠A=60°,
∵△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,
∴CA=CA′=2,∠CA′B′=∠A=60°,
∴△CAA′为等边三角形,
∴∠ACA′=60°,
∴∠BCA′=∠ACB-∠ACA′=90°-60°=30°,
∴∠A′DC=180°-∠CA′B′-∠BCA′=90°,
在Rt△A′DC中,∵∠A′CD=30°,∴A′D=CA′=1,CD=A′D=,∴.故答案为:【点睛】本题考查了含30度的直角三角形三边的关系,等边三角形的判定和性质以及旋转的性质,掌握旋转的性质“对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等”是解题的关键.16、6或2.【解析】试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=;②点P在AD上时,如图:先建立相似三角形,过E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(两角对应相等,两三角形相似),∴对应线段成比例:,代入相应数值:,∴EF=2.综上所述:EF长为6或2.考点:翻折变换(折叠问题).17、1或﹣1【解析】
根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形CEOF=S四边形HAGO,根据反比例函数比例系数的几何意义即可求出k2+4k+1=6,再解出k的值即可.【详解】如图:∵四边形ABCD、HBEO、OECF、GOFD为矩形,又∵BO为四边形HBEO的对角线,OD为四边形OGDF的对角线,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四边形CEOF=S四边形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案为1或﹣1.【点睛】本题考查了反比例函数k的几何意义、矩形的性质、一元二次方程的解法,解题的关键是判断出S四边形CEOF=S四边形HAGO.18、4﹣【解析】解:(1)当a=1时,抛物线L的解析式为:y=x1,当y=1时,1=x1,∴x=±,∵B在第一象限,∴A(﹣,1),B(,1),∴AB=1,∵向右平移抛物线L使该抛物线过点B,∴AB=BC=1,∴AC=4;(1)如图1,设抛物线L3与x轴的交点为G,其对称轴与x轴交于Q,过B作BK⊥x轴于K,设OK=t,则AB=BC=1t,∴B(t,at1),根据抛物线的对称性得:OQ=1t,OG=1OQ=4t,∴O(0,0),G(4t,0),设抛物线L3的解析式为:y=a3(x﹣0)(x﹣4t),y=a3x(x﹣4t),∵该抛物线过点B(t,at1),∴at1=a3t(t﹣4t),∵t≠0,∴a=﹣3a3,∴=﹣,故答案为(1)4;(1)﹣.点睛:本题考查二次函数的图象和性质.熟练掌握二次函数的性质是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)y1=2x+2;(2)选择在B站出地铁,最短时间为39.5分钟.【解析】
(1)根据表格中的数据,运用待定系数法,即可求得y1关于x的函数表达式;(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=x2-9x+80,根据二次函数的性质,即可得出最短时间.【详解】(1)设y1=kx+b,将(8,18),(9,20),代入y1=kx+b,得:解得所以y1关于x的函数解析式为y1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y1+y2=2x+2+x2-11x+78=x2-9x+80=(x-9)2+39.5.所以当x=9时,y取得最小值,最小值为39.5,答:李华应选择在B站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.【点睛】本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.20、(1)见解析;(2)见解析;【解析】
(1)由四边形ABCD是平行四边形,根据平行四边形的对边相等,对角相等的性质,即可证得∠A=∠C,AB=CD,又由AE=CF,利用SAS,即可判定△ABE≌△CDF.(2)由四边形ABCD是平行四边形,根据平行四边形对边平行且相等,即可得AD∥BC,AD=BC,又由AE=CF,即可证得DE=BF.根据对边平行且相等的四边形是平行四边形,即可证得四边形BFDE是平行四边形.【详解】证明:(1)∵四边形ABCD是平行四边形,∴∠A=∠C,AB=CD,在△ABE和△CDF中,∵AB=CD,∠A=∠C,AE=CF,∴△ABE≌△CDF(SAS).(2)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴AD﹣AE=BC﹣CF,即DE=BF.∴四边形BFDE是平行四边形.21、(1);(2)80米/分;(3)6分钟【解析】
(1)根据图示,设线段AB的表达式为:y=kx+b,把把(4,240),(16,0)代入得到关于k,b的二元一次方程组,解之,即可得到答案,
(2)根据线段OA,求出甲的速度,根据图示可知:乙在点B处追上甲,根据速度=路程÷时间,计算求值即可,
(3)根据图示,求出二者相遇时与出发点的距离,进而求出与终点的距离,结合(2)的结果,分别计算出相遇后,到达终点甲和乙所用的时间,二者的时间差即可所求答案.【详解】(1)根据题意得:
设线段AB的表达式为:y=kx+b(4≤x≤16),
把(4,240),(16,0)代入得:,
解得:,
即线段AB的表达式为:y=-20x+320(4≤x≤16),
(2)又线段OA可知:甲的速度为:=60(米/分),
乙的步行速度为:=80(米/分),
答:乙的步行速度为80米/分,
(3)在B处甲乙相遇时,与出发点的距离为:240+(16-4)×60=960(米),
与终点的距离为:2400-960=1440(米),
相遇后,到达终点甲所用的时间为:=24(分),
相遇后,到达终点乙所用的时间为:=18(分),
24-18=6(分),
答:乙比甲早6分钟到达终点.【点睛】本题考查了一次函数的应用,正确掌握分析函数图象是解题的关键.22、(1)图形见解析;(2)图形见解析;(3)图形见解析,点P的坐标为:(2,0)【解析】
(1)按题目的要求平移就可以了关于原点对称的点的坐标变化是:横、纵坐标都变为相反数,找到对应点后按顺序连接即可(3)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.【详解】(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)△PAB如图所示,点P的坐标为:(2,0)【点睛】1、图形的平移;2、中心对称;3、轴对称的应用23、(1)w=(x﹣200)y=(x﹣200)(﹣2x+1)=﹣2x2+1400x﹣200000;(2)令w=﹣2x2+1400x﹣200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=﹣2x2+1400x﹣200000=﹣2(x﹣350)2+45000,当x=250时y=﹣2×2502+1400×250﹣200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量×(销售单价-成本价),即可列出函数关系式;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值.试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400x-200000;(2)令w=-2x2+1400x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400x-200000=-2(x-350)2+45000,当x=250时y=-2×2502+1400×250-200000=25000;故最高利润为45000元,最低利润为25000元.24、(1)A(4,3);(2)28.【解析】
(1)点A是正比例函数与一次函数图像的交点坐标,把与联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据即可求得△OBC的面积.【详解】解:(1)由题意得:,解得,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,∴.∵P(a,0),∴B(a,),C(a,-a+7),∴BC=,∴,解得a=8.∴.25、【解析】分析:该分式方程无解的情况有两种:(1)原方程存在增根;(2)原方程约去分母后,整式方程无解.详解:去分母得:x(x-a)-1(x-1)=x(x-1),去括号得:x2-ax-1x+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2021高考化学(广东专用)二轮考点突破-第五部分-化学实验-专题二十三-实验方案的设计与评价-
- 2020采购员个人工作计划范文
- 2025年人教版八年级数学寒假预习 第12讲 菱形的性质与判定(2个知识点+6大考点举一反三+过关测试)
- 学校化学教师个人工作总结
- 2020年小学教学论文开题报告范文
- 【导与练】2021届高三物理大一轮复习(人教版适用)训练题:章末定时练3
- 陕西省渭南市尚德中学2024-2025学年高一上学期第二次阶段性物理试卷(含答案)
- 辽宁省沈阳市名校2024-2025学年七年级上学期期末考试地理试题(含答案)
- 吉林省松原市前郭五中2024~2025学年高二上期末考试 生物(含答题卡、答案)
- 【名师金典】2022新课标高考生物总复习限时检测15孟德尔的豌豆杂交实验(二)-
- 初二年级劳动课教案6篇
- 箱变迁移工程施工方案
- 北师大版九年级数学下册《圆的对称性》评课稿
- 《遥感原理与应用》期末考试试卷附答案
- 物流无人机垂直起降场选址与建设规范(征求意见稿)
- 工程分包管理制度
- 2023年湖南成人学位英语考试真题
- GB/T 9452-2023热处理炉有效加热区测定方法
- 肺炎支原体肺炎诊治专家共识
- 药物化学(第七版)(全套课件1364P)
- 能源中国(上海电力大学)超星尔雅学习通网课章节测试答案
评论
0/150
提交评论