




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省安康市汉阴县第二高级中学高三最后一卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件2.已知函数,若关于的方程恰好有3个不相等的实数根,则实数的取值范围为()A. B. C. D.3.已知(),i为虚数单位,则()A. B.3 C.1 D.54.记为数列的前项和数列对任意的满足.若,则当取最小值时,等于()A.6 B.7 C.8 D.95.函数的部分图象如图所示,已知,函数的图象可由图象向右平移个单位长度而得到,则函数的解析式为()A. B.C. D.6.已知函数.设,若对任意不相等的正数,,恒有,则实数a的取值范围是()A. B.C. D.7.复数满足,则复数等于()A. B. C.2 D.-28.已知实数x,y满足约束条件,若的最大值为2,则实数k的值为()A.1 B. C.2 D.9.已知集合,则等于()A. B. C. D.10.设复数满足,在复平面内对应的点为,则不可能为()A. B. C. D.11.在一个数列中,如果,都有(为常数),那么这个数列叫做等积数列,叫做这个数列的公积.已知数列是等积数列,且,,公积为,则()A. B. C. D.12.抛物线的焦点为,则经过点与点且与抛物线的准线相切的圆的个数有()A.1个 B.2个 C.0个 D.无数个二、填空题:本题共4小题,每小题5分,共20分。13.已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)14.如图,机器人亮亮沿着单位网格,从地移动到地,每次只移动一个单位长度,则亮亮从移动到最近的走法共有____种.15.在等差数列()中,若,,则的值是______.16.从4名男生和3名女生中选出4名去参加一项活动,要求男生中的甲和乙不能同时参加,女生中的丙和丁至少有一名参加,则不同的选法种数为______.(用数字作答)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2+y2=1,曲线C2的参数方程为(θ为参数).(Ⅰ)求曲线C1和C2的极坐标方程:(Ⅱ)设射线θ=(ρ>0)分别与曲线C1和C2相交于A,B两点,求|AB|的值.18.(12分)如图,⊙的直径的延长线与弦的延长线相交于点,为⊙上一点,,交于点.求证:~.19.(12分)在中,为边上一点,,.(1)求;(2)若,,求.20.(12分)已知,函数,(是自然对数的底数).(Ⅰ)讨论函数极值点的个数;(Ⅱ)若,且命题“,”是假命题,求实数的取值范围.21.(12分)已知函数.(1)若在上是减函数,求实数的最大值;(2)若,求证:.22.(10分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B【点睛】本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.2、D【解析】
讨论,,三种情况,求导得到单调区间,画出函数图像,根据图像得到答案.【详解】当时,,故,函数在上单调递增,在上单调递减,且;当时,;当时,,,函数单调递减;如图所示画出函数图像,则,故.故选:.【点睛】本题考查了利用导数求函数的零点问题,意在考查学生的计算能力和应用能力.3、C【解析】
利用复数代数形式的乘法运算化简得答案.【详解】由,得,解得.故选:C.【点睛】本题考查复数代数形式的乘法运算,是基础题.4、A【解析】
先令,找出的关系,再令,得到的关系,从而可求出,然后令,可得,得出数列为等差数列,得,可求出取最小值.【详解】解法一:由,所以,由条件可得,对任意的,所以是等差数列,,要使最小,由解得,则.解法二:由赋值法易求得,可知当时,取最小值.故选:A【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题.5、A【解析】
由图根据三角函数图像的对称性可得,利用周期公式可得,再根据图像过,即可求出,再利用三角函数的平移变换即可求解.【详解】由图像可知,即,所以,解得,又,所以,由,所以或,又,所以,,所以,,即,因为函数的图象由图象向右平移个单位长度而得到,所以.故选:A【点睛】本题考查了由图像求三角函数的解析式、三角函数图像的平移伸缩变换,需掌握三角形函数的平移伸缩变换原则,属于基础题.6、D【解析】
求解的导函数,研究其单调性,对任意不相等的正数,构造新函数,讨论其单调性即可求解.【详解】的定义域为,,当时,,故在单调递减;不妨设,而,知在单调递减,从而对任意、,恒有,即,,,令,则,原不等式等价于在单调递减,即,从而,因为,所以实数a的取值范围是故选:D.【点睛】此题考查含参函数研究单调性问题,根据参数范围化简后构造新函数转换为含参恒成立问题,属于一般性题目.7、B【解析】
通过复数的模以及复数的代数形式混合运算,化简求解即可.【详解】复数满足,∴,故选B.【点睛】本题主要考查复数的基本运算,复数模长的概念,属于基础题.8、B【解析】
画出约束条件的可行域,利用目标函数的几何意义,求出最优解,转化求解即可.【详解】可行域如图中阴影部分所示,,,要使得z能取到最大值,则,当时,x在点B处取得最大值,即,得;当时,z在点C处取得最大值,即,得(舍去).故选:B.【点睛】本题考查由目标函数最值求解参数值,数形结合思想,分类讨论是解题的关键,属于中档题.9、C【解析】
先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.10、D【解析】
依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.11、B【解析】
计算出的值,推导出,再由,结合数列的周期性可求得数列的前项和.【详解】由题意可知,则对任意的,,则,,由,得,,,,因此,.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.12、B【解析】
圆心在的中垂线上,经过点,且与相切的圆的圆心到准线的距离与到焦点的距离相等,圆心在抛物线上,直线与抛物线交于2个点,得到2个圆.【详解】因为点在抛物线上,又焦点,,由抛物线的定义知,过点、且与相切的圆的圆心即为线段的垂直平分线与抛物线的交点,这样的交点共有2个,故过点、且与相切的圆的不同情况种数是2种.故选:.【点睛】本题主要考查抛物线的简单性质,本题解题的关键是求出圆心的位置,看出圆心必须在抛物线上,且在垂直平分线上.二、填空题:本题共4小题,每小题5分,共20分。13、y=2x【解析】试题分析:当x>0时,-x<0,则f(-x)=ex-1+x.又因为f(x)为偶函数,所以f(x)=f(-x)=ex-1+x,所以f'【考点】函数的奇偶性、解析式及导数的几何意义【知识拓展】本题题型可归纳为“已知当x>0时,函数y=f(x),则当x<0时,求函数的解析式”.有如下结论:若函数f(x)为偶函数,则当x<0时,函数的解析式为y=-f(x);若f(x)为奇函数,则函数的解析式为y=-f(-x).14、【解析】
分三步来考查,先从到,再从到,最后从到,分别计算出三个步骤中对应的走法种数,然后利用分步乘法计数原理可得出结果.【详解】分三步来考查:①从到,则亮亮要移动两步,一步是向右移动一个单位,一步是向上移动一个单位,此时有种走法;②从到,则亮亮要移动六步,其中三步是向右移动一个单位,三步是向上移动一个单位,此时有种走法;③从到,由①可知有种走法.由分步乘法计数原理可知,共有种不同的走法.故答案为:.【点睛】本题考查格点问题的处理,考查分步乘法计数原理和组合计数原理的应用,属于中等题.15、-15【解析】
是等差数列,则有,可得的值,再由可得,计算即得.【详解】数列是等差数列,,又,,,故.故答案为:【点睛】本题考查等差数列的性质,也可以由已知条件求出和公差,再计算.16、1【解析】
由排列组合及分类讨论思想分别讨论:①设甲参加,乙不参加,②设乙参加,甲不参加,③设甲,乙都不参加,可得不同的选法种数为9+9+5=1,得解.【详解】①设甲参加,乙不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,②设乙参加,甲不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为9,③设甲,乙都不参加,由女生中的丙和丁至少有一名参加,可得不同的选法种数为5,综合①②③得:不同的选法种数为9+9+5=1,故答案为:1.【点睛】本题考查了排列组合及分类讨论思想,准确分类及计算是关键,属中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ),;(Ⅱ)【解析】
(Ⅰ)根据,可得曲线C1的极坐标方程,然后先计算曲线C2的普通方程,最后根据极坐标与直角坐标的转化公式,可得结果.(Ⅱ)将射线θ=分别与曲线C1和C2极坐标方程联立,可得A,B的极坐标,然后简单计算,可得结果.【详解】(Ⅰ)由所以曲线的极坐标方程为,曲线的普通方程为则曲线的极坐标方程为(Ⅱ)令,则,,则,即,所以,,故.【点睛】本题考查极坐标方程和参数方程与直角坐标方程的转化,以及极坐标方程中的几何意义,属基础题.18、证明见解析【解析】
根据相似三角形的判定定理,已知两个三角形有公共角,题中未给出线段比例关系,故可根据判定定理一需找到另外一组相等角,结合平面几何的知识证得即可.【详解】证明:∵,所以,又因为,所以.在与中,,,故~.【点睛】本题考查平面几何中同弧所对的圆心角与圆周角的关系、相似三角形的判定定理;考查逻辑推理能力和数形结合思想;分析图形,找出角与角之间的关系是证明本题的关键;属于基础题.19、(1);(2)4【解析】
(1),利用两角差的正弦公式计算即可;(2)设,在中,用正弦定理将用x表示,在中用一次余弦定理即可解决.【详解】(1)∵,∴,所以,.(2)∵,∴设,,在中,由正弦定理得,,∴,∴,∵,∴∴.【点睛】本题考查两角差的正弦公式以及正余弦定理解三角形,考查学生的运算求解能力,是一道容易题.20、(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析:(1),分,讨论,当时,对,,当时,解得,在上是减函数,在上是增函数。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设,所以,设,则,且是增函数,所以。所以分和k>1讨论。试题解析:(Ⅰ)因为,所以,当时,对,,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.(Ⅱ)命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设,所以,设,则,且是增函数,所以当时,,所以在上是增函数,,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为,,所以在上存在唯一零点,当时,,在上单调递减,从而,即,所以在上单调递减,所以当时,,即.所以不等式在区间内有解综上所述,实数的取值范围为.21、(1)(2)详见解析【解析】
(1),在上,因为是减函数,所以恒成立,即恒成立,只需.令,,则,因为,所以.所以在上是增函数,所以,所以,解得.所以实数的最大值为.(2),.令,则,根据题意知,所以在上是增函数.又因为,当从正方向趋近于0时,趋近于,趋近于1,所以,所以存在,使,即,,所以对任意,,即,所以在上是减函数;对任意,,即,所以在上是增函数,所以当时,取得最小值,最小值为.由于,,则,当且仅当,即时取等号,所以当时,.22、(1)见解析;(2)【解析】
(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 陇原巧手培训管理制度
- 超市小票节能管理制度
- 食堂管理制度杜绝浪费
- 足协球员管理制度规定
- 财务科的工作计划(10篇)
- 水厂反冲洗排泥水处理方案探索与优化分析
- 老年人阅读服务优化方案
- 高等职业教育办学能力提升路径与实施方案
- 2025至2030年中国耐油橡胶垫行业投资前景及策略咨询报告
- 2025至2030年中国网上订房系统行业投资前景及策略咨询报告
- 2025-2030中国私募股权行业市场发展现状及前景趋势与投资战略研究报告
- 山东省机场管理集团2025年应届毕业生校园招聘(67人)笔试参考题库附带答案详解
- 江西高管实业发展有限公司招聘考试真题2024
- 2025年中国煤炭地质总局招聘(392人)笔试参考题库附带答案详解
- 2024年广东广州大学招聘编制内管理和教辅人员笔试真题
- 2025浙江绍兴市文化旅游集团限公司招聘83人易考易错模拟试题(共500题)试卷后附参考答案
- 科研项目标准起草编制说明范文
- 荆门市“招硕引博”笔试试题2024
- 工作交接表表格模板
- 【电气专业】15D501建筑物防雷设施安装
- 离婚登记申请受理回执单(民法典版)
评论
0/150
提交评论