




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市赵虎镇中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知集合A={x|﹣2≤x≤3},B={x|x<﹣1},则集合A∩B=() A.{x|﹣2≤x<4} B.{x|x≤3或x≥4} C.{x|﹣2≤x<﹣1} D.{x|﹣1≤x≤3}参考答案:C【考点】交集及其运算. 【专题】计算题;集合思想;定义法;集合. 【分析】由A与B,求出两集合的交集即可. 【解答】解:∵A={x|﹣2≤x≤3},B={x|x<﹣1}, ∴A∩B={x|﹣2≤x<﹣1}, 故选:C. 【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. 2.观察下图:12343456745678910……则第________行的各数之和等于
().A.2014
B.2013
C.1007
D.1008参考答案:C3.在四边形ABCD中,若,,则四边形ABCD是(
)A.平行四边行
B.矩形
C.正方形
D.菱形参考答案:D4.在三棱柱ABC-A1B1C1中,点E、F、H、K分别为AC1、CB1、A1B、B1C1的中点,G为△ABC的重心,有一动点P在三棱柱的面上移动,使得该棱柱恰有5条棱与平面PEF平行,则以下各点中,在点P的轨迹上的点是
A.H
B.K
C.G
D.B1参考答案:B5.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A和∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.由平面三角形的性质,推测空间四面体的性质C.某校高三共有10个班,1班有51人,2班有53人,三班有52人,由此推测各班都超过50人D.在数列{an}中,a1=1,an=(an﹣1+)(n≥2),计算a2、a3,a4,由此猜测通项an参考答案:A【考点】演绎推理的基本方法.【分析】由推理的基本形式,逐个选项验证可得.【解答】解:选项A为三段论的形式,属于演绎推理;选项B为类比推理;选项C不符合推理的形式;选项D为归纳推理.故选:A6.不等式的解集是:
A.
B.
C.
D.参考答案:A7.(文)设过点的直线分别与轴的正半轴和轴的正半轴交于两点,点与点关于轴对称,为坐标原点,若且,则点的轨迹方(
)
A.
B.
C.
D.参考答案:D8.设是定义在上以2为周期的偶函数,已知,,则函数在上()A.是增函数且
B.是增函数且C.是减函数且
D.是减函数且参考答案:D略9.函数的递增区间为(
)A.(0,1),(3,+∞) B.(1,3)C.(-∞,1),(3,+∞) D.(3,+∞)参考答案:A分析:直接对函数求导,令导函数大于0,即可求得增区间.详解:,,增区间.故答案为:A.点睛:本题考查了导数在研究函数的单调性中的应用,需要注意的是函数的单调区间一定是函数的定义域的子集,因此求函数的单调区间一般下,先求定义域;或者直接求导,在定义域内求单调区间.10.已知函数在上可导,对任意实数,;若为任意的正实数,下列式子一定正确的是(
)
A.
B.C.
D.参考答案:A略二、填空题:本大题共7小题,每小题4分,共28分11.总体由编号为的个个体组成,利用截取的随机数表(如下图)选取6个个体,选取方法是从所给的随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第6个个体的编号为_________.参考答案:【分析】根据随机数表的规则,依次读取在编号内的号码,取出第6个编号即为所求,重复的只算一次.【详解】解:由随机数表第行的第列和第列数字组合成的两位数为65,从65开始由左到右依次选取两个数字,将在内的编号依次取出,重复的只算一次,即依次选取个体的编号为,因此第个个体的编号为.【点睛】本题考查了利用随机数表进行抽样的问题,读懂抽样规则是解题的关键.12.若点P(cosα,sinα)在直线y=-2x上,则的值为_______参考答案:13.“斐波那契数列”是数学史上一个著名数列,在斐波那契数列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)则a8=;若a2018=m2+1,则数列{an}的前2016项和是.(用m表示).参考答案:21;m2【考点】数列的求和.【分析】①由a1=1,a2=1,an+2=an+1+an(n∈N*),a3=1+1=2,同理可得:a4,a5,a6,a7,a8②由于a1=1,a2=1,an+an+1=an+2(n∈N*),可得a1+a2=a3,a2+a3=a4,a3+a4=a5,…,a2016+a2017=a2018.以上累加求和即可得出【解答】解:①∵a1=1,a2=1,an+2=an+1+an(n∈N*),∴a3=1+1=2,同理可得:a4=3,a5=5,a6=8,则a7=13,a8,=21.②∵a1=1,a2=1,an+an+1=an+2(n∈N*),∴a1+a2=a3,a2+a3=a4,a3+a4=a5,…,a2015+a2016=a2017a2016+a2017=a2018.以上累加得,a1+a2+a2+a3+a3+a4+…+2a2016+a2017=a3+a4+…+a2018,∴a1+a2+a3+a4+…+a2016=a2018﹣a2=m2+1﹣1=m2,故答案分别为:21;m214.以下有5个说法:①若,则函数在其定义域内是减函数;②命题“若,则”的否命题是“若,则”;③命题“若都是偶数,则也是偶数”的逆命题为真命题;④命题“若,则”与命题“若,则”是等价的;⑤“”是“函数在区间上为增函数”的充分不必要条件。其中所有正确的说法有
参考答案:②④⑤15.若函数,则的反函数
.参考答案:16.观察以下三个等式:(1)13+23=9;(2)13+23+33=36;(3)13+23+33+43=100,归纳其特点可以获得一个猜想是13+23+33+…+n3=______________.参考答案:略17.椭圆E:+=1内有一点P(2,1),则经过P并且以P为中点的弦所在直线方程为.参考答案:x+2y﹣4=0【考点】直线与圆锥曲线的关系.【分析】设所求直线与椭圆相交的两点的坐标,然后利用点差法求得直线的斜率,最后代入直线方程的点斜式得答案.【解答】解:设所求直线与椭圆相交于A(x1,y1),B(x2,y2),则,.两式相减得.又x1+x2=4,y1+y2=2,∴kAB=.因此所求直线方程为y﹣1=﹣(x﹣2),即x+2y﹣4=0.故答案为:x+2y﹣4=0.【点评】本题考查了直线与圆锥曲线的关系,训练了点差法求与中点弦有关的问题,是中档题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ=4cosθ.(1)把曲线C的极坐标方程化为直角坐标方程;(2)设直线l与曲线C交于M,N两点,点A(1,0),求+的值.参考答案:【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,利用互化公式可得直角坐标方程.(2)把直线l的参数方程代入曲线C的直角坐标方程可得:3t2﹣8t﹣16=0,可得|t1﹣t2|=,+==.【解答】解:(1)由曲线C的极坐标方程为ρsin2θ=4cosθ,即ρ2sin2θ=4ρcosθ,可得直角坐标方程:y2=4x.(2)把直线l的参数方程(t为参数)代入曲线C的直角坐标方程可得:3t2﹣8t﹣16=0,∴t1+t2=,t1t2=﹣.∴|t1﹣t2|===.∴+====.19.已知双曲线的左、右焦点分别为F1、F2,点P在双曲线上,且PF2⊥x轴,则F2到直线PF1的距离为.参考答案:略20.设全集是实数集R,,B=.(Ⅰ)当a=4时,求A∩B和A∪B;(Ⅱ)若,求实数的取值范围.参考答案:21.某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A,B两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》.(1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率;(2)若从A,B两组中各任选2人,设为选出的4人中选听《生活趣味数学》的人数,求的分布列.参考答案:(1)设“选出的3人中恰有2人选听《校园舞蹈赏析》”为事件,则,…………4分(2)的可能取值为,
,
,
所以的分布列为:0123…………12分22.(1)计算()2+;(2)复数z=x+y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理风险与患者安全管理
- 人教版数学六年级下册全优达标训练之解决问题(试题)
- 2025年江苏省徐州市丰县中学高三3月第一次模拟考试数学试题文试题含解析
- 福建省三明市永安市重点中学2024-2025学年初三化学试题下学期4月模拟训练试题(二)含解析
- 浙江工商职业技术学院《中国文化概要》2023-2024学年第一学期期末试卷
- 广西民族大学相思湖学院《城市滨水景观规划设计》2023-2024学年第一学期期末试卷
- 东阳市2025年小升初复习数学模拟试卷含解析
- 2025年黑龙江省齐齐哈尔市物理试题高考冲刺卷(七)含解析
- 株洲师范高等专科学校《多媒体出版》2023-2024学年第二学期期末试卷
- 安徽省定远县2024-2025学年初三一模(期末)英语试题含答案
- 2025年上半年下半年浙江省舟山市港航管理局招聘6人易考易错模拟试题(共500题)试卷后附参考答案
- 2025年中医针灸学主治医师-中医针灸学考试题(附答案)
- 老年人安全用药与护理
- 黑色三分钟生死一瞬间第9、10部
- 适老化住宅改造服务行业深度调研及发展战略咨询报告
- 2025年郑州黄河护理职业学院单招职业技能测试题库及答案1套
- GB/T 45236-2025化工园区危险品运输车辆停车场建设规范
- 新地基基础-基桩静荷载试验考试复习题库(含答案)
- 《致敬英雄》课件
- 房地产开发项目资金监管协议
- 持续集成与自动化部署(CICD)-深度研究
评论
0/150
提交评论