人教版八年级上册数学月考试题共3份_第1页
人教版八年级上册数学月考试题共3份_第2页
人教版八年级上册数学月考试题共3份_第3页
人教版八年级上册数学月考试题共3份_第4页
人教版八年级上册数学月考试题共3份_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2020-2021学年湖南省长沙市雨花区广益实验中学八年级(上)第一次月

考数学试卷(解析版)

一、选择题(每小题3分,共计36分)

1.2020年初,新型冠状病毒引发肺炎疫情,一方有难,八方支援,全国多家医院纷纷选派医护人员驰援

武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是()

A湘雅医院C.齐鲁医院D.华西医院

2.下列运算正确的是(

A.2x*3y=5xyB.(a2)3=a5

C.(-ab)3=-ab3D.(-2x)2=4/

3.如图,/XABC与aA'B'C'关于直线/对称,若乙4=50°,ZC=20°,则NS度数为()

C.90°D.30°

4.《中共中央国务院关于促进农民增加收入若干政策的意见》中提出“进一步精简乡镇机构和财政供养人

员,积极稳妥地调整乡镇建制,有条件的可实行并村”.《中共中央国务院关于积极发展现代农业扎实推

进社会主义新农村建设的若干意见》中明确提出“治理农村人居环境,搞好村庄治理规划和试点,节约

农村建设用地”.以上两个政策出台后,山东陆陆续续开展了村庄合并某地兴建的幸福小区的三个出口

A、8、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充

电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()

A.三条边的垂直平分线的交点处

B.三个角的平分线的交点处

C.三角形三条高线的交点处

D.三角形三条中线的交点处

5.若点P(m-1,5)与点Q(3,2-〃)关于y轴对称,则,的值是()

A.-5B.1C.5D.11

6.如果等腰三角形两边长是4CM和8cm,那么它的周长是()

A.16cmB.20cmC.21cmD.16或20c/n

7.如图所示的正方形网格中,网格线的交点称为格点.已知A、8是两格点,若C也是图中的格点,则使

得△ABC是以A8为一腰的等腰三角形时,点C的个数是()

8.如图,上午8时,一艘船从4处出发以15海里/小时的速度向正北航行,10时到达8处,从A、8两

点望灯塔C,测得NM4C=42°,NNBC=84°,则8处到灯塔C的距离为()

A.15海里B.20海里C.30海里D.求不出来

9.比较255、3相、433的大小()

A.255<344<433B.433<344<255

C.255<433<344D.344<433<255

10.如图,△ABC是等腰三角形,点。是底边8c上任意一点,OE、。尸分别与两边垂直,等腰三角形的

腰长为6,面积为15,则OE+OF的值为()

C.9D.10

11.若(3x-m)(x-1)中不含x的一次项,则()

A・m=1B.m--1C.m=-3D.m=3

12.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()

①(2a+b)(〃?+〃);

②2。(〃汁〃)+b(加+〃);

③"2(2〃+b)+〃(2a+b);

(4)2am+2an+hm+bn.

aba

A.①②B.③④C.①②③D.①②③④

二.填空题[每小题3分,共计18分)

13.等腰三角形有一个底角的度数是80°,则另两个角的度数分别是.

14.计算:0.252019X42020=.

15.已知a0=a+8+l,则(a-1)(/>-1)=.

16.如图.现有正方形卡片A类,B类和长方形卡片C类各若干张,如果要拼一个长为(“+36),宽为(34+2为

的大长方形,那么需要C类卡片的张数是

aba

17.如图,在RtZSABC中,ZACB=9O°,AB的垂直平分线CE交AC于E,交BC的延长线于尸,垂足

为D.若/F=30°,BE=4,则DE的长等于.

18.如图所示,在等腰aABC中,AB=AC,ZB=50°,。为8c的中点,点E在AB上,ZA£D=73°,

若点尸是等腰AABC的腰上的一点,则当为以OE为腰的等腰三角形时,NEZJP的度数是.

A

B

D

三、解答题(共计66分)

19.(6分)计算

(1)2x2yz,3Ay3z2;

(2)(-2?)3-3?(X6-)-2).

20.(6分)先化简,再求值

1)+?(-4x-3),其中x=-2.

21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,^ABC的三个顶点A、B、C

都在格点上.

(1)在图中画出与△ABC关于直线y成轴对称的△AIBICI;

(2)求△ABC的面积;

(3)在x轴上找出一点P,使得尸8+PC的值最小.(不需计算,在图上直接标记出点尸的位置)

22.(8分)如图,点。是aABC内部的一点,BD=CD,过点。作。ELAB,DFYAC,垂足分别为E、

F,且8E=C?求证:ZVIBC为等腰三角形.

23.(9分)甲乙两人共同计算一道整式乘法:(3x+a)(2x-6),甲把第二个多项式中人前面的减号抄成了

加号,得到的结果为67+16x+8;乙漏抄了第二个多项式中x的系数2,得到的结果为3*2-10x-8.

(1)计算出〃、6的值;

(2)求出这道整式乘法的正确结果.

24.(9分)如图,在RtZ\ABC中,N4BC=90°,点。在边AC上,S.ZDBC=ZDCB

(1)求证:AD=CD;

(2)若乙4=30°,DELAC,交48于E,求型的值.

AE

25.(10分)在平面直角坐标系中,我们不妨把横纵坐标相等的点称为“梦之点”,如(-1,-1),(0,0),

(&,&)…都是梦之点•

(1)若点尸(32X+4,27X)是“梦之点”,请求出x的值;

(2)若“为正整数,点M(x4n,4)是“梦之点”,求(户)2-4(?)5"的值:

(3)若点A(x,y)的坐标满足方程y=3履+s-1(Z,s是常数),请问点A能否成为“梦之点”若能,

请求出此时点A的坐标,若不能,请说明理由.

26.(10分)如图1,在平面直角坐标系中,直线AB分别交无轴、y轴于A(a,0)、B(0,b)两点,且

a,人满足(a-b)2+|a-4r|=0,且f>0,f是常数.直线2。平分NO8A,交x轴于。点.

(1)若AB的中点为M,连接OM交BO于N,求证:ON=OD;

(2)如图2,过点A作AEJ_BC,垂足为E,猜想4E与8。间的数量关系,并证明你的猜想;

(3)如图3,在x轴上有一个动点P(在A点的右侧),连接P8,并作等腰RtaBPF,其中NBPF=90°,

连接船并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范

围;若不变,求出它的长度.

2020-2021学年湖南省长沙市雨花区广益实验中学八年级(上)第一次月

考数学试卷

参考答案与试题解析

一、选择题(每小题3分,共计36分)

1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,全国多家医院纷纷选派医护人员驰援

武汉.下面是四家医院标志的图案部分,其中图案部分是轴对称图形的是()

A.玲,,协和医院B.蓍湘雅医院C③.齐鲁医院D.、融公华西医院

【分析】利用轴对称图形的定义进行解答即可.

【解答】解:4、不是轴对称图形,故此选项不合题意;

8、不是轴对称图形,故此选项不符合题意;

C、是轴对称图形,故此选项符合题意;

。、不是轴对称图形,故此选项不合题意;

故选:C.

2.下列运算正确的是()

A.2x,3y—5xyB.(a2)3—a5

C.(-ab)=-ab3D.(-2x)2=4x2

【分析】用单项式乘以单项式法则计算A,用塞的乘方法则计算8,用积的乘方法则计算C、D.

【解答】解::2厂3)=6町,"5孙,故选项A错误;

(4?)3=06/々5,故选项B错误;

(-ah')3=--而3,故选项C错误;

(-2x)2=4/,故选项。正确.

故选:D.

3.如图,△ABC与B1C关于直线/对称,若/4=50°,NC=20°,则度数为()

A.110°B.70°C.90°D.30°

【分析】利用三角形内角和定理求出/B,再利用轴对称的性质解决问题即可.

【解答】解::△ABC与△A'B'C关于直线/对称,

:.ZB'=NB,

VZB=I8O°-ZA-ZC=180°-50°-20°=110°,

:.ZB'=110°,

故选:A.

4.《中共中央国务院关于促进农民增加收入若干政策的意见》中提出“进一步精简乡镇机构和财政供养人

员,积极稳妥地调整乡镇建制,有条件的可实行并村”.《中共中央国务院关于积极发展现代农业扎实推

进社会主义新农村建设的若干意见》中明确提出“治理农村人居环境,搞好村庄治理规划和试点,节约

农村建设用地”.以上两个政策出台后,山东陆陆续续开展了村庄合并某地兴建的幸福小区的三个出口

A、8、C的位置如图所示,物业公司计划在不妨碍小区规划的建设下,想在小区内修建一个电动车充

电桩,以方便业主,要求到三个出口的距离都相等,则充电桩应该在()

B

A.三条边的垂直平分线的交点处

B.三个角的平分线的交点处

C.三角形三条高线的交点处

D.三角形三条中线的交点处

【分析】根据性的垂直平分线的性质解答即可.

【解答】解:•••电动车充电桩到三个出口的距离都相等,

充电桩应该在三条边的垂直平分线的交点处,

故选:A.

5.若点P1,5)与点Q(3,2-n)关于y轴对称,则〃计”的值是()

A.-5B.1C.5D.11

【分析】根据关于y轴对称的点的坐标特点可得机-1=-3,2-〃=5,再解即可.

【解答】解:由题意得:m-1=-3,2-n—5,

解得:m=-2,n--3,

贝ijm+n=-2-3=-5,

故选:A.

6.如果等腰三角形两边长是和8cm,那么它的周长是()

A.16cmB.20cwC.21cmD.16或20cvw

【分析】腰长为8cm和4c”两种情况,再利用三角形的三边关系进行判定,再计算周长即可.

【解答】解:当腰长为8cm时,则三角形的三边长分别为8cm、8c,"、4cm,满足三角形的三边关系,

此时周长为20cim

当腰长为4c"时,则三角形的三边长分别为4c,〃、4cm,8cm,此时4+4=8,不满足三角形的三边关系,

不符合题意;

故选:B.

7.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,若C也是图中的格点,则使

得△ABC是以AB为一腰的等腰三角形时,点C的个数是()

【分析】根据AB是腰长时,根据网格结构,找出一个小正方形与A、8顶点相对的顶点,连接即可得

到等腰三角形,

【解答】解:如图,以A8为等腰△ABC其中的一条腰时,符合条件的C点有4个.

故选:C.

8.如图,上午8时,一艘船从4处出发以15海里/小时的速度向正北航行,10时到达B处,从4、B两

点望灯塔C,测得NNAC=42°,NNBC=84°,则B处到灯塔C的距离为()

N

C

\-^B

A.15海里B.20海里C.30海里D.求不出来

【分析】由上午8时,一条船从海岛A出发,以15海里的时速向正北航行,10时到达海岛B处,可求

得AB的长,又由NN4C=42°,4NBC=84°,可得NC=/NAC,即可证得BC=A2,则可得从海岛

B到灯塔C的距离.

【解答】解:根据题意得:46=2X15=30(海里),

":Z/VAC=42°,NNBC=84°,

:.NC=NNBC-/NAC=42°,

:.NC=NNAC,

:.BC=A8=30海里.

即从海岛B到灯塔C的距离是30海里.

故选:C.

9.比较255、3*、433的大小()

A.255<344<433B,433<344<255

C.255<433<344D,344<433<255

【分析】根据幕的乘方,底数不变指数相乘都转换成指数是11的累,再根据底数的大小进行判断即可.

【解答】解:255=(25)11=32”,

3"=(3与11=8』,

4"=(43)"=64”,

V32<64<81,

A255<433<344

故选:C.

10.如图,△ABC是等腰三角形,点。是底边8c上任意一点,OE、OF分别与两边垂直,等腰三角形的

腰长为6,面积为15,贝UOE+OF的值为()

A.5B.7.5C.9D.10

【分析】连接AO,根据三角形的面积公式即可得到LB・OE+LC•。尸=15,根据等腰三角形的性质

22

即可求得OE+OF的值.

【解答】解:连接40,如图,

':AB=AC=6,

5AABC—SMBO+SMOC=XAB•OE+^AC'OF—15,

22

':AB=AC,

(OE+OF)=15,

2

OE+OF=5.

故选:A.

11.若(3x-机)(x-1)中不含x的一次项,则()

A.m=lB.m--1C.m=-3D.m=3

【分析】直接利用多项式乘以多项式计算进而得出一次项系数为零,即可得出答案.

【解答】解:(3x-(X-1)

=3/-3x-mx+m

=3/-(3+〃?)x+m,

C3x-m)(x-1)中不含x的一次项,

,3+m=0,

解得:m—~3,

故选:C.

12.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,你认为其中正确的有()

①(2。+匕)(m+n);

@2a(m+n)+。(tn+n);

(3)m(2。+6)+〃(2a+b);

(4)2a/n+2an+hm+hn.

aba

A.①②B.③④C.①②③D.①②③④

【分析】根据图中长方形的面积可表示为总长X总宽,也可表示成各矩形的面积和,

【解答】解:表示该长方形面积的多项式

①(2a+b)(m+n)正确;

②2。(m+n)+b(m+n)正确;

③nz(2a+b)+n(2a+b)正确;

@2am+2an+bm+bn正确.

故选:D.

二.填空题[每小题3分,共计18分)

13.等腰三角形有一个底角的度数是80°,则另两个角的度数分别是80。和20°.

【分析】根据等腰三角形的性质和三角形的内角和定理解答即可.

【解答】解:因为等腰三角形的一个底角的度数为80°,

所以另外两个内角的度数分别是80°,20°,

故答案为:80°,20°.

14.计算:0.2520I9X42020=4.

【分析】根据积的乘方运算法则计算即可,积的乘方,等于每个因式乘方的积.

【解答】解:0.2520,9X42020

=0.252019X42019X4

=(0.25X4)2019X4

=12019义4

=4.

故答案为:4.

15.已知ab=a+b+\,则(a-1)(6-1)=2.

[分析】将ah=a+h+l代入原式-a-b+\合并即可得.

【解答】解:当浦=。+什1时,

原式-a-b+1

=a+b+\-a-b+\

故答案为:2.

16.如图.现有正方形卡片A类,B类和长方形卡片C类各若干张,如果要拼一个长为(a+36),宽为(3"2b)

的大长方形,那么需要。类卡片的张数是一11.

ab

【分析】按照长方形面积公式计算所拼成的大长方形的面积,再对比卡片的面积,即可得解.

【解答】解:,/(“+3b)(3a+2〃)=3/+1146+6房,

•.•一张C类卡片的面积为必,

•••需要C类卡片11张.

故答案为:11.

17.如图,在RtZvWC中,NACB=90°,A8的垂直平分线。E交AC于E,交8c的延长线于F,垂足

为D.若/F=30°,BE=4,则。E的长等于2.

【分析】先利用三角形内角和证明NA=/F=30°,再根据线段的垂直平分线的性质得到EA=E2,所

以/EB4=/4=30°,然后根据含30度的直角三角形三边的关系求OE的长.

【解答】解:;NC=90°,FDLAB,

而NAED=NCEF,

:.ZA=ZF=30°,

垂直平分48,

:.EA=EB,

:.ZEBA=ZA=30°,

.,.£>£=ABE=1.X4=2.

22

故答案为2.

18.如图所示,在等腰△ABC中,AB=AC,/B=50°,。为8c的中点,点E在AB上,NAED=73:

若点P是等腰△4BC的腰上的一点,则当为以DE为腰的等腰三角形时,NEDP的度数是34°

或53.5°或100°或134°.

【分析】根据等腰三角形的性质和全等三角形的判定和性质定理解答即可.

【解答】解:':AB=AC,NB=50°,ZAED=J3°,

:.ZEDB=23°,

•.•当△£>£?是以OE为腰的等腰三角形,

①当点尸在A8上,

,/DE=DP\,

;.NDPiE=NAED=73°,

.,.NE£>Pi=180°-73°-73°=34°,

②当点尸在AC上,

":AB=AC,。为BC的中点,

:.ZBAD=ZCAD,

过。作。G_LAB于G,DHLAC于H,

:.DG=DH,

一,fDE=DPn

在Rt/A\DEG与RtZAXDP2H中,4乙,

DG=DH

:.Rt/\DEG^Rt/\DP2H(HL),

.•./AP2D=/AE£>=73°,

VZBAC=180--50°-50°=80°,

:.ZEDP2=\34°,

③当点尸在AC上,

同理证得RtZ\Z)EG也RtZ\OPH(HL),

:.NEDG=NP3DH,

:.ZEDP3=ZGDH=100°,

④当点尸在AB上,EP=E。时,ZEDP=1.(180°-73°)=53.5°.

故答案为:34°或53.5°或100°或134°.

三、解答题(共计66分)

19.(6分)计算

(1)2x2yz,3xy3z2;

(2)(-2x3)3-3?(/-y2).

【分析】(1)直接利用单项式乘单项式运算法则计算得出答案;

(2)直接利用积的乘方运算法则以及单项式乘多项式运算法则计算得出答案.

【解答】解:(1)2x2yz,3xy3z2

=6X3>,4Z3;

(2)(-2?)3-3?(x6-7)

=-8x9-3x9+3?y2

=-11/+3。2.

20.(6分)先化简,再求值

3X*(2X2+X-1)+x2(-4x-3)>其中x=-2.

【分析】先根据整式的乘法法则算乘法,再合并同类项,最后代入求出即可.

【解答】解:3x・(2?+x-1)+f(-4尤-3)

=6『+3/-3x-4丁-37

—2^-3x,

当x=-2时,原式=2X(-2)3-3X(-2)=-16+6=-10.

21.(8分)如图,在长度为1个单位长度的小正方形组成的正方形网格中,△ABC的三个顶点A、B、C

都在格点上.

(1)在图中画出与△ABC关于直线y成轴对称的△A1B1C1;

(2)求△A8C的面积;

(3)在x轴上找出一点P,使得PB+PC的值最小.(不需计算,在图上直接标记出点P的位置)

【分析】(1)依据轴对称的性质,即可得到与△/IBC关于直线y成轴对称的

(2)依据割补法进行计算,即可得出AABC的面积;

(3)作点B关于x轴的对称点8,连接8c交x轴于P,则P8+PC的值最小.

【解答】解:(1)如图所示,△4加。即为所求;

(2)AABC的面积=3X3--1.X2X3-JLX1X2-工X1X3=2.;

2222

(3)如图所示,点P即为所求.

22.(8分)如图,点。是△ABC内部的一点,BD=CD,过点。作。ELAB,DFVAC,垂足分别为E、

F,且8E=CF.求证:ZXABC为等腰三角形.

【分析】欲证明4B=AC,只要证明N4BC=NACB即可;

【解答】证明:':DEVAB,DFYAC,

:.ZBED^ZCFD=90a.

在RtABDE和RtACDF中,

(BE=CF

1BD=CD

.•.RtABDE^RtACDF(HL),

:"EBD=NFCD,

•:BD=CD,

:.NDBC=NDCB,

:.ZDBC+ZEBD=ZDCB+ZFCD,

即NABC=NAC8,

.\AB=AC.

23.(9分)甲乙两人共同计算一道整式乘法:(3x+a)(2%-6),甲把第二个多项式中〃前面的减号抄成了

加号,得到的结果为67+16X+8;乙漏抄了第二个多项式中x的系数2,得到的结果为3--10x-8.

(1)计算出“、。的值:

(2)求出这道整式乘法的正确结果.

【分析】(1)先按甲乙错误的说法得出的系数的数值求出a,6的值即可;

(2)把a,〃的值代入原式,再根据多项式乘多项式的法则进行计算即可得出答案.

【解答】解:(1)甲的算式:(3x+a)(2x+i>)=67+(3b+2a)x+ab—6x2+l6x+8.

对应的系数相等,36+2a=16,必=8,

乙的算式:(3x+a)(x-h)=3/+(-3h+a)x-ah=3x2-10%-8,

对应的系数相等,-3〃+a=-10,浦=8,

.f3b+2a=16,

1-3b+a=_10

解得:卜=2;

Ib=4

(2)根据(1)可得正确的式子:(3尤+2)(2x-4)=6?-8x-8.

24.(9分)如图,在Rt/XABC中,NABC=90°,点。在边AC上,且NDBC=NDCB

(1)求证:AD=CD;

(2)若NA=30°,DELAC,交AB于E,求型的值.

AE

【分析】(1)直接利用直角三角形的性质结合互余两角的关系得出N4=NABD,进而得出答案;

(2)直接利用直角三角形的性质表示出A8,AE,BC,AC的长进而得出答案.

【解答】(1)证明:I/DBC=NDCB,NC+/A=90°,NABD+NDBC=90°,

:.ZA^ZABD,BD=DC,

:.AD=BD,

则AO=C£>;

(2)解:VZA=30°,DE±AC,

.•.设£>E=x,则AE=2x,

故AO=«r,则£>C=心,

可得BC=心,

则AB=3x,

故BE=x,

则理=z_=_L.

AE2x2

25.(10分)在平面直角坐标系中,我们不妨把横纵坐标相等的点称为“梦之点”,如(-1,-1),(0,0),

(&,、历)…都是梦之点•

(1)若点P(32/4,27D是“梦之点”,请求出X的值;

(2)若〃为正整数,点M(x4n,4)是“梦之点”,求(/)2-4(/)5"的值;

(3)若点A(尤,y)的坐标满足方程y=3辰+s-1(%,s是常数),请问点A能否成为“梦之点”若能,

请求出此时点A的坐标,若不能,请说明理由.

【分析】(1)根据“梦之点”的定义列出方程3入+4=27犬,求出x的值即可;

(2)根据“梦之点”的定义得到(X2")2=4,再把要求的式子变形为(/")3-4(/")5,最后整体

代入求值即可;

(3)假设函数y=3"+s-l(%,s是常数)的图象上存在“梦之点”(x,x),则有x=3履+s-2,整理

得(3Z-1)x=l-s,再分三种情况进行讨论即可.

【解答】解:(1)根据题意得:32户4=27。

A32^4=33X>

*,*2x+4=3x,

解得,x—4;

(2);•点M(/”,4)是“梦之点”,

;.》4"=4,即(%2")2=4,

是正整数,

;.2"是偶数,

.".x2n=2,

(口)2-4(7)5"

=(7")3-4(7")5,

=23-4X25

=8-128

=-120;

(3)假设函数y=3Ax+s-1(k,s是常数)的图象上存在“梦之点”(x,x),

则有y=3fcc+s-1,

整理,得(3A-1)x=l-s,

当3k-1W0,即寸,解得尸上§_;

33k-1

1-51-5

.•.A(,);

3k-13k-1

当3k-1=0,1-5=0,即%=1_,s=l时,x有无穷多解;

3

当3%-1=0,1-sWO,即%=工,sWl时、x无解;

3

综上所述,当2工时,“梦之点”的坐标为A上");当左=工,s=l时,“梦之点”有无数

33k-13k-13

个;当无=工,sWl时,不存在“梦之点”.

3

26.(10分)如图1,在平面直角坐标系中,直线AB分别交x轴、y轴于AQ,0)、B(0,h)两点,且

a,6满足(a-b)2+\a-4t\=0,且f>0,f是常数.直线8。平分/084,交x轴于。点.

(1)若4B的中点为M,连接交BC于N,求证:ON=OD;

(2)如图2,过点A作垂足为E,猜想AE与8。间的数量关系,并证明你的猜想;

(3)如图3,在x轴上有一个动点P(在A点的右侧),连接PB,并作等腰RtaBPF,其中NBPF=90°,

连接阳并延长交y轴于G点,当P点在运动时,OG的长是否发生改变?若改变,请求出它的变化范

围;若不变,求出它的长度.

【分析】(1)根据直线解析式求出点A、B的坐标,然后得出△AOB是等腰直角三角形,再根据角平分

线的定义求出NABO=22.5°,根据等腰三角形三线合一的性质然后根据直角三角形两锐角

互余的性质与三角形的一个外角等于与它不相邻的两个内角的和求出NONQ=67.5°,ZODB=

67.5°,利用等角对等边得到0N=0£>;

(2)延长AE交B0于C,得△A8E名ZXCBE,得至ljAC=2AE,再证△O4CgZ\OBD得到从

而得到BD=2AE;

(3)作垂足为H,利用角角边定理可以证明△OBP与△Z/PF全等,根据全等三角形对应边

相等可得FH=OP、PH=OB=4,再证AH=FH,/欣H=NOAG=45°,OG=OA^4t.

【解答】(1)证明:,♦,直线4B分别交x轴、y轴于4(a,0)、B(0,6)两点,且a,。满足(a-b)

2+\a-4/|=0,且>0,

.,.a=b=4t,

当x=0时,y—4t,

当y=0时,-x+4r=0,

解得x=4t,

...点A、B的坐标是A(4/,0),B(0,4f),

△AOS是等腰直角三角形,

•..点M是A8的中点,

OM1.AB,

:.ZMOA=45°,

•.,直线平分NOA4,

;.乙钻力=上乙480=22.5°,

2

:.NOND=NBNM=90°-NABO=90°-22.5°=67.5°,

NODB=NABD+/BAD=22.5°+45°=67.5°,

:.ZOND=ZODB,

:.ON=OD(等角对等边);

(2)答:BD=2AE.

理由如下:延长AE交BO于C,

•.•8。平分/。&4,

二NABD=NCBD,

•.,AE_LBD于点E,

:.ZAEB=ZCEB=90°,

,ZABD=ZCBD

在△ABE丝△CBE中,<BE=BE

,ZAEB=ZCEB=90O

A/XABE^ACBE(ASA),

:.AE=CE,

:.AC=2AE,

\'AE±BD,

:.ZOAC+ZADE=9^,

又NOBD+/BDO=90:ZADE=ZBDO(对顶角相等),

;.NOAC=NOBD,

rZ0AC=Z0BD

在△O4C与△08。中,<OA=OB,

,ZBOD=ZAOC

.♦.△OAC丝△OB。(ASA),

:.BD=AC,

:.BD=2AE;

(3)OG的长不变,且0G=4.

过F作尸”,。「,垂足为”,

;.NFPH+/PFH=9Q°,

VZBPF=90°,

;.NBPO+NFPH=90°,

:./FPH=/BPO,

••,△8尸尸是等腰直角三角形,

JBP=FP,

<ZFPH=ZBPO

在408尸与中,ZBOP=ZFHP=90°,

BP=FP

:./\OBP^^\HPF(A4S),

:・FH=0P,PH=0B=4t,

t

:AH=PH+AP=0B+APf0A=0B,

:.AH=0A+0P=0P,

:・FH=AH,

:.ZGAO=ZFAH=45°,

•••△AOG是等腰直角三角形,

/.OG=OA=4t.

商城思源实验学校八年级上学期第一次月考数学试题

(无答案)

一、选择题(共10小题,每小题3分,共30分,每小题只有一个正确选项)

1.下列每组数分别表示三根木棒的长,将它们首尾连接后,能摆成三角形的一组是()

A.1,2,1B,1,2,3C.1,2,2D.1,2,4

2.具备下列条件的三角形ABC中,不为直角三角形的是()

A、ZA+ZB=ZCB、ZA=ZB=-ZCC、ZA=90°-ZBD、ZA-ZB=90°

2

3.已知等腰三角形的两边长分别为3和6,则它的周长等于()

A.12B.12或15C.15D.15或18

4.一个多边形的每个外角都是45°,则这个多边形的内角和为()

A.360°B.140C.1080°D.7200

5.如图,在aACB中,ZACB=100°,ZA=20°,D是AB上一点,将aABC沿CD折叠,使B

点落在AC边上的B,处,则NADB,等于()

A.25B.30°C.35D.40

(第5题)(第6题)(第7题)

6.如图,AC=DF,ZACB=ZDFE,下列哪个条件不能判定aABC之4DEF()

A.ZA=ZDB.BE=CFC.AB=DED.AB〃DE

7.用三角尺可以按照下面的方法画NAOB的角平分线;在OA、OB上分别取点M、N,使OM=ON;

再分别过点M,N画0A,0B的垂线,这两条垂线相交于点P,画射线0P(如图),则射线0P

平分NAOB,以上画角平分线时,用到的三角形全等的判定方法是()

A.SSSB.SASC.HLD.ASA

8.如图,将一副常规的三角尺如图放置,则图中NAOB的度数是()

A.75°B.95°C.105°D.1200

(第8题)

9.如图,点D是AABC的边BC上任意一点,点E、F分别是线段AD、CE的中点,则4ABC

的面积等于4BEF的面积的()

A.2倍B.3倍C.4倍D.5倍

10.在数学活动课上,小明提出这样一个问题:ZB=ZC=90°,E是BC的中点,DE平分NADC,

如图,则下列说法正确的有()个。

(1)AE平分NDAB;(2)AEBA^ADCE;(3)AB+CD=AD;(4)AE±DE;(5)AB//CD

A.2个B.3个C.4个D.5个

(第9题)(第10题)(第12题)

二、填空题(本大题共5小题,每小题3分,共15分)

11.一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别

是3,3x-2y,x+2y,若这两个三角形全等,则x+y的值是______.

12.如图、在ZXABC中,AD为NBAC的平分线,DE_LAB于E,DFLAC于F,三角形ABC面积

是18cm2,AC=8cm,DE=2cm,贝UAB的长cm.

13、如图,BE、CF是AABC的角平分线,ZBAC=80°,BE、CF相交于D,则NBDC的度数是

14、如图为6个边长相等的正方形的组合图形,则Nl+N2+N3=

(第13题)(第14题)(第15题)

15、如图,已知P(3,3),点B、A分别在X轴正半轴和y轴正半轴上,ZAPB=90°,

则OA+OB=.

三、解答题:

16.(8分)如图,在AABC中,NBAC是钝角,完成下列画图.(均不写作法,不用说明结果,但

要在图形上标注字母)

⑴△ABC的角平分线AD(此小题要求尺规作图,保留作图痕迹);

(2)AC边上的中线BE;

⑶AC边上的高BF.

17.(8分)在等腰4ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,这

个等腰三角形的底边BC的长.

18.(8分)如图,C是AB的中点,AD=CE,CD=BE.

求证:(l)aDCA乌4EBC(2)AD〃CE

-D

19、(8分)已知,如图,在△ABC中,AD,AE分别是△ABC的高和角平分线,若NB=30°,NC=50°,

求NDAE的度数.

20.(9分)如图,在AABC中,NACB=90°,AC=BC,BE_LCE于E,ADJ_CE于点D,AD=3.1cm,

DE=1.8cm,求BE的长.

21.(10分)如图,已知AABC为等边三角形(三条边相等,三个角为60°的三角

形),点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F。

⑴求证:△ABEgZ\CAD;

(2)求NBFD的度数.

22.(12分)如图1,有平面直角坐标系中,A(-2,0),B(0,3),C(3、0),D(0,2)

⑴求证:AB=CD且ABLCD;

(2)如图2,以A为直角顶点在第二象限内作等腰直角三角形ABE,过点E作EFJ_x轴于点F,

求点F的坐标;

(3)如图3,若点P为y轴正半轴上一动点,以AP为直角边作等腰直角三角形APQ,点Q在第

一象限,ZAPQ=90°,QRlx轴于点R,当点P运动时,OP-QR的值是否发生变化?若不变,

求出其值;若变化,请说明理由.

23.(12分)已知点P为NEAF平分线上一点,PB_LAE于B,PC_LAF于C,点M、N分别是射线

AE、AF上的点,

⑴如图1,当点M在线段AB上,点N在线段AC的延长线上,且PM=PN,求证:

BM=CN;

(2)在(1)的条件下,直接写出线段AM、CN与AC之间的数量关系.

⑶如图2,当点M在线段AB的延长线上,点N在线段AC上时,ZMAN+MPN=180°,若AC:PC=2:1,

PC=4,求四边形ANPM的面积.

20202021学年河南省郑州八中八年级(上)第一次月考

数学试卷(解析版)

一、选择题

(3分)在下列各数,0,-0.2,日~,^279

1.1.1010010001…(相邻两个1之间的0

的个数次加1)无理数的个数是()

A.2B.3C.4D.5

2.(3分)设。为正整数,且〃vJ^Va+1,则〃的值为()

A.5B.6C.7D.8

3.(3分)满足下列条件的△ABC中,不是直角三角形的是)

AB二在

A.ZA:NB:ZC=1:2:3B.AC=1,BC=29

D.AC二正,BC=AB=V5

C.AC=6,BC=S9AB=1O

4.(3分)在直线/上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、

2、3,正放置的四个正方形的面积依次是S1、S2、S3、«4,则S1+S2+S3+S4等于()

A.4B.5D.14

5.(3分)下列运算中正确的是()

A.扬愿=代B.(-娓)2=5C,3&-2&=1D.716=±4

6.(3分)如困,在波平如镜的湖面上,有一朵盛开的美丽的红莲,它高出水面30cM.突然一阵大风吹

过,红莲被吹至一边,花朵下部刚好齐及水面,如果知道红莲移动的水平距离为60c叫则水深是()

30cm

A.35B.40C.50D.45

7.(3分)如图,在矩形ABC。中无重叠放入面积分别为8c/和12cm2的两张正方形纸片,则图中空白

部分的面积为()

D

BC

A.4-\[2/cm2B.(8^/3-12)cm2C.(4^/5-8)cm2D.(4^5+12)cm2

8.(3分)在如图的网格中,每个小正方形的边长为1,A、3、C三点均在正方形格点上,则下列结论

错误的是()

A.AB=275B.ZBAC=90°

C.S^ABC=10D

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论