勾股定理的逆定理的应用 分层作业(解析版)_第1页
勾股定理的逆定理的应用 分层作业(解析版)_第2页
勾股定理的逆定理的应用 分层作业(解析版)_第3页
勾股定理的逆定理的应用 分层作业(解析版)_第4页
勾股定理的逆定理的应用 分层作业(解析版)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版初中数学八年级下册17.2.2勾股定理的逆定理的应用同步练习夯实基础篇一、单选题:1.如图,在每个小正方形的边长为1的网格中,△ABC的的顶点都在格点上.则∠ABC的度数为()A.120° B.135° C.150° D.165°【答案】B【分析】根据勾股定理逆定理证明∠D是直角,结合BD=CD得∠DBC=45°,从而得到∠ABC.【详解】如图,延长射线AB交格点于点D,∵每个小正方形的边长为1∴,∵∴∠D=90°又∵BD=CD∴△BCD是等腰直角三角形∴∠DBC=45°∴∠ABC=180°-∠DBC=180°-45°=135°故选B.【点睛】本题考查了勾股定理的逆定理,利用勾股定理逆定理证明∠D是直角是解决本题的关键.2.如图所示的一块地,已知,,,,,则这块地的面积为(

).A. B. C. D.【答案】C【分析】连接,先利用勾股定理求出,再根据勾股定理的逆定理判定是直角三角形,再由的面积减去的面积就是所求的面积,即可.【详解】解:如图,连接.

在中,∵,∴,又∵,∴是直角三角形,∴这块地的面积.故答案为:C.【点睛】本题主要考查了勾股定理及其逆定理的应用,根据勾股定理逆定理得到是直角三角形是解题的关键.3.如图,四边形ABCD中,AB=15,BC=12,CD=16,AD=25,且∠C=90°,则四边形ABCD的面积是()A.246 B.296 C.592 D.以上都不对【答案】A【详解】解:连接BD.∵∠C=90°,BC=12,CD=16,∴BD==20,在△ABD中,∵BD=20,AB=15,DA=25,152+202=252,即AB2+BD2=AD2,∴△ABD是直角三角形.∴S四边形ABCD=S△ABD+S△BCD=AB•BD+BC•CD=×15×20+×12×16=150+96=246.故选A.4.已知,是线段上的两点,,,以点为圆心,长为半径画弧;再以点为圆心,长为半径画弧,两弧交于点,则一定是(

)A.锐角三角形 B.直角三角形 C.等腰三角形 D.等边三角形【答案】B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】解:如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选:B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.5.已知实数a,b为的两边,且满足,第三边,则第三边c上的高的值是

A. B. C. D.【答案】D【分析】本题主要考查了算术平方根的非负性及偶次方的非负性,勾股定理的逆定理及三角形面积的运算,首先根据非负性的性质得出a、b的值是解题的关键,再根据勾股定理的逆定理判定三角形为直角三角形,再根据三角形的面积得出c边上高即可.【详解】解:整理得,,所以,解得;因为,,所以,所以是直角三角形,,设第三边c上的高的值是h,则的面积,所以.故选:D.【点睛】本题考查了非负数的性质、勾股定理的逆定理,解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.二、填空题:6.已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距_____.【答案】40海里【分析】根据方位角可知两船所走的方向正好构成了直角,然后根据路程=速度×时间,得两条船分别走了32,24,再根据勾股定理,即可求得两条船之间的距离.【详解】解:∵两船行驶的方向是东北方向和东南方向,∴∠BAC=90°,两小时后,两艘船分别行驶了16×2=32,12×2=24海里,根据勾股定理得:=40(海里).故答案为:40海里.【点睛】本题考查了勾股定理的应用,熟练运用勾股定理进行计算,基础知识,比较简单.7.如图,在一块三角形土地上,准备规划出阴影所示部分作为绿地,若规划图设计中∠ADC=90°,AD=8,CD=6,AB=26,BC=24,求绿地的面积为___.【答案】96【分析】先根据勾股定理求出AC的长,再根据勾股定理的逆定理即可证明△ABC为直角三角形,进而根据S阴影=SRt△ABC−SRt△ACD,利用三角形的面积公式计算即可求解.【详解】解:在Rt△ADC中,∠ADC=90°,AD=8,CD=6,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,∴AC2+BC2=AB2,∴△ABC为直角三角形,S阴影=SRt△ABC−SRt△ACD=×10×24−×8×6=96.故答案为:96.【点睛】本题考查的是勾股定理的运用和勾股定理的逆定理运用,解题的关键是根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ABC为直角三角形.8.如图,的周长为36cm,,点P从点A出发,以1cm/s的速度向点B移动;点Q从点B出发,以2cm/s的速度向点C移动.如果P,Q两点同时出发,那么经过3s后,的面积为______.【答案】18【分析】根据三角形的周长公式求出三边长,根据勾股定理的逆定理得出∠B=90°,根据三角形的面积公式求出△BPQ的面积;【详解】解:(1)设AB、BC、CA分别为3x、4x、5x,由题意得:3x+4x+5x=36,解得:x=3,则AB=3x=9,BC=4x=12,AC=5x=15,∵AB2+BC2=92+122=225,AC2=152=225,∴AB2+BC2=AC2,∴∠B=90°,当t=3时,AP=3cm,BQ=6cm,则BP=9-3=6cm,∴.故答案为:18.【点睛】本题考查勾股定理的逆定理.能正确判断△BPQ为直角三角形9.如图所示,在四边形ABCD中,AB=5,BC=3,DE⊥AC于E,DE=3,S△DAC=6,则∠ACB的度数等于_____.【答案】90°##90度【分析】根据三角形面积公式求出AC=4,根据勾股定理逆定理即可求出∠ACB=90°.【详解】解:∵DE⊥AC于E,DE=3,S△DAC=6,∴×AC×DE=6,∴AC=4,∴,∵AB=5,∴AB2=25,∴,∴∠ACB=90°.故答案为:90°【点睛】本题考查了勾股定理逆定理和三角形的面积应用,熟练掌握勾股定理逆定理是解题关键.10.“我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=0.5千米,则该沙田的面积为________________平方千米.【答案】7.5【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【详解】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:×5×500×12×500=7500000(平方米)=7.5(平方千米).故答案为7.5.【点睛】此题主要考查了勾股定理的应用,正确得出三角形的形状是解题关键.11.如图,在钝角中,已知为钝角,边,的垂直平分线分别交于点,,若,则的度数为________.【答案】【分析】如图中,连接AD、AE.首先证明∠DAE=90°,易知∠DBA=∠DAB,∠EAC=∠C,根据三角形内角和定理可得,推出,由此即可解决问题.【详解】解:如图,连接,.∵,的垂直平分线分别交于点,,∴,,∴,.∵,∴,∴,∴,∴,∴,∴.故答案为:.【点睛】本题考查了线段垂直平分线的性质和三角形内角和定理,根据线段垂直平分线作出辅助线,根据三角形内角和定理解决问题是关键.12.在中,,,,平分交于点,,且交于点,则的长为_____________.【答案】##【分析】首先利用勾股定理逆定理证明为直角三角形,然后利用角平分线性质和平行线性质求得,,,根据角平分线定理可知,再根据求得的长.【详解】∵,,,∴,∴,为直角三角形,∵平分,∴,∵,∴,∴,∴为等腰直角三角形,∴,如图作⊥于点,∵平分,,,,∴,在中,,即,可得,,故答案为:.【点睛】本题考查了勾股定理逆定理、角平分线、平行线、三角形面积,解答本题的关键是熟练运用角平分线定理和三角形面积相等求解.三、解答题:13.如图,在四边形中,,,,,求四边形的面积.【答案】【分析】根据、由勾股定理可以计算的长,根据,,由勾股定理的逆定理可以判定为直角三角形,再根据四边形的面积为和面积之和即可求解.【详解】解:,,,,,,,,,,是直角三角形,,在中,,在中,,.【点睛】本题考查了勾股定理及勾股定理的逆定理的运用,考查了直角三角形面积计算,本题中求证是直角三角形是解题的关键.14.为响应政府的“公园城市建设”号召,某小区进行小范围绿化,要在一块如图四边形空地上种植草皮,测得,,,,,如果种植草皮费用是200元/,那么共需投入多少钱?【答案】46800【分析】连接,利用勾股定理求出,利用勾股定理逆定理,求出为直角三角形,进而利用两个直角三角形的面积和求出四边形的面积,再用面积乘以费用,即可得解.【详解】解:如图所示,连接.,,,,又,,,即,是直角三角形,所需费用为元.答:共需投入46800元.【点睛】本题考查勾股定理逆定理的应用.熟练掌握勾股定理,以及利用勾股定理逆定理判断三角形是直角三角形是解题的关键.15.如图,等腰是某小区的一块空地,,开发商准备将其修建成一个小区居民娱乐中心,在上取一点D,连接区域修建为儿童乐园,区域修建为中老年棋牌室,经测量,米,米,米,求中老年棋牌室(即)的面积.【答案】中老年棋牌室(即)的面积为84平方米【分析】由勾股定理的逆定理先证明是直角三角形,且,则是直角三角形,且.设米,则米,在中,由求得米,即可得到答案.【详解】解:∵米,米,米,∴,∴是直角三角形,且,∴是直角三角形,且.设米,则米,∵在中,,∴,解得,即米,∴(平方米).∴中老年棋牌室(即)的面积为84平方米.【点睛】此题考查了勾股定理及其逆定理的应用,证明是直角三角形是解题的关键.16.如图,学校操场边有一块四边形空地,其中,,,,,创建绿色校园,学校计划将这块四边形空地进行绿化整理.(1)求需要绿化的空地的面积;(2)为方便师生出入,设计了过点A的小路,且于点E,试求小路的长.【答案】(1)114m2;(2)的长为m【分析】(1)由勾股定理求出,再由勾股定理的逆定理证出是直角三角形,,然后由三角形面积公式求解即可;(2)由三角形的面积公式求解即可.【详解】(1)解:,,,,,,是直角三角形,,需要绿化的空地的面积;(2)解:,,,,解得:,即小路的长为.【点睛】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形的面积等知识,解题的关键是熟练掌握勾股定理,由勾股定理的逆定理证出.17.如图,某港口O位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里(1)若它们离开港口一个半小时后分别位于A、B处(图1),且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?请说明理由(2)若“远航”号沿北偏东30°方向航行(图2),从港口O离开经过两个小时后位于点F处,此时船上有一名乘客需要紧急回到海岸线上,若他从F处出发,乘坐的快艇的速度是每小时90海里,他能在20分钟内回到海岸线吗?请说明理由.【答案】(1)“海天”号沿西北方向航行,理由见解析(2)能在20分钟内回到海岸线,理由见解析【分析】(1)根据勾股定理的逆定理得出是直角三角形,进而解答即可;(2)过点A作于D,根据含30度角的直角三角形的性质,根据勾股定理得出F到x轴距离,进而得出答案.(1)解:∵(海里),(海里),(海里),∴,∴是直角三角形,∴,∵“远航”号沿东北方向航行,∴,∴,∴“海天”号沿西北方向航行;(2)过点F作于D,(海里),∵,∴,∴(海里),∵(海里),,∴能在20分钟内回到海岸线.【点睛】此题考查勾股定理的应用,关键是根据勾股定理的逆定理得出是直角三角形解答.能力提升篇一、单选题:1.甲、乙两艘客轮同时离开港口,航行的速度都是,甲客轮沿着北偏东的方向航行,后到达小岛,乙客轮到达小岛.若,两岛的直线距离为,则乙客轮离开港口时航行的方向是(

)A.北偏西 B.南偏西C.南偏东或北偏西 D.南偏东或北偏西【答案】C【分析】根据题意可得OA=30海里,OB=40海里,再利用勾股定理的逆定理证明△AOB是直角三角形,从而求出∠AOB=90°,然后分两种情况,画出图形,进行计算即可解答.【详解】解:由题意得,海里,海里,OA2+OB2=302+402=2500,AB2=502=2500,OA2+OB2=AB2,∠AOB=90°,分两种情况:如图1,=180°-30°-90°=60°,乙客轮离开港口时航行的方向是:南偏东60°,如图2,∠BON=∠AOB-∠AON=90°-30°=60°,乙客轮离开港口时航行的方向是:北偏西60°,综上所述:乙客轮离开港口时航行的方向是:南偏东60或北偏西60°,故选:C.【点睛】本题考查了勾股定理的逆定理,方向角,根据题目的已知条件画出图形进行分析是解题的关键.2.点A(2,m),B(2,m-5)在平面直角坐标系中,点O为坐标原点.若△ABO是直角三角形,则m的值不可能是(

)A.4 B.2 C.1 D.0【答案】B【分析】分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况考虑:当∠OAB=90°时,点A在x轴上,进而可得出m=0;当∠OBA=90°时,点B在x轴上,进而可得出m=5;当∠AOB=90°时,利用勾股定理可得出关于m的一元二次方程,解之即可得出m的值.综上,对照四个选项即可得出结论.【详解】解:分三种情况考虑(如图所示):当∠OAB=90°时,m=0;当∠OBA=90°时,m−5=0,解得:m=5;当∠AOB=90°时,AB2=OA2+OB2,即25=4+m2+4+m2−10m+25,解得:m1=1,m2=4.综上所述:m的值可以为0,5,1,4.故选B.【点睛】本题考查了坐标与图形性质以及勾股定理,分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况求出m的值是解题的关键.3.已知在等腰三角形ABC中,D为BC的中点AD=12,BD=5,AB=13,点P为AD边上的动点,点E为AB边上的动点,则PE+PB的最小值是(

)A.10 B.12 C. D.【答案】D【分析】根据勾股定理的逆定理得到∠ADB=90°,得到点B,点C关于直线AD对称,过C作CE⊥AB交AD于P,则此时PE+PB=CE的值最小,根据三角形的面积公式即可得到结论.【详解】解:∵AD=12,BD=5,AB=13,∴AB2=AD2+BD2,∴∠ADB=90°,∵D为BC的中点,BD=CD,∴AD垂直平分BC,∴点B,点C关于直线AD对称,过C作CE⊥AB交AD于P,则此时PE+PB=CE的值最小,∵S△ABC=AB•CE=BC•AD,∴13•CE=10×12,∴CE=,∴PE+PB的最小值为,故选:D.【点睛】本题考查了轴对称-最短路线问题,勾股定理的逆定理,两点这间线段最短,线段垂直平分线的性质,三角形的面积公式,利用两点之间线段最短来解答本题.二、填空题:4.如图,点P是等边△ABC内的一点,PA=6,PB=8,PC=10,若点P′是△ABC外的一点,且△P′AB≌△PAC,则∠APB的度数为___.【答案】150°【分析】如图:连接PP′,由△PAC≌△P′AB可得PA=P′A、∠P′AB=∠PAC,进而可得△APP′为等边三角形易得PP′=AP=AP′=6;然后再利用勾股定理逆定理可得△BPP′为直角三角形,且∠BPP′=90°,最后根据角的和差即可解答.【详解】解:连接PP′,∵△PAC≌△P′AB,∴PA=P′A,∠P′AB=∠PAC,∴∠P′AP=∠BAC=60°,∴△APP′为等边三角形,∴PP′=AP=AP′=6;∵PP′2+BP2=BP′2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=90°+60°=150°.故答案为:150°.【点睛】本题主要考查了全等三角形的性质、等边三角形的判定与性质、勾股定理逆定理的应用等知识点,灵活应用相关知识点成为解答本题的关键.5.如图是一台雷达探测相关目标得到的结果,若记图中目标A的位置为(2,),目标B的位置为(4,),现有一个目标C的位置为(3,),且与目标B的距离为5,则目标C的位置为______.【答案】(3,300°)或(3,120°)【分析】设中心点为点O,,由勾股定理逆定理可知,且C有两个方向,即可确定C.【详解】解:如图:设中心点为点O,在中,,,是直角三角形,且∴C的位置为:(3,)或(3,).【点睛】本题主要考查了用方向角和距离表示点的位置,勾股定理逆定理,注意分类是解决问题的关键.6.如图,在中,,点在线段上以每秒个单位的速度从向移动,连接,当点移动_____秒时,与的边垂直.【答案】或或.【分析】设运动时间为然后分当、和三种情况运用勾股定理解答即可.【详解】解:设运动时间为则,当时,如图1所示,过点作于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论