林芝重点名校2023-2024学年中考四模数学试题含解析_第1页
林芝重点名校2023-2024学年中考四模数学试题含解析_第2页
林芝重点名校2023-2024学年中考四模数学试题含解析_第3页
林芝重点名校2023-2024学年中考四模数学试题含解析_第4页
林芝重点名校2023-2024学年中考四模数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

林芝重点名校2023-2024学年中考四模数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50 B.步行人数为30C.乘车人数是骑车人数的2.5倍 D.骑车人数占20%2.如图,矩形ABCD的对角线AC,BD相交于点O,点M是AB的中点,若OM=4,AB=6,则BD的长为()A.4 B.5 C.8 D.103.一元二次方程4x2﹣2x+=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法判断4.甲、乙两人参加射击比赛,每人射击五次,命中的环数如下表:次序第一次第二次第三次第四次第五次甲命中的环数(环)67868乙命中的环数(环)510767根据以上数据,下列说法正确的是()A.甲的平均成绩大于乙 B.甲、乙成绩的中位数不同C.甲、乙成绩的众数相同 D.甲的成绩更稳定5.下列二次根式中,的同类二次根式是()A. B. C. D.6.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A. B. C. D.7.如图,某小区计划在一块长为31m,宽为10m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m1.若设道路的宽为xm,则下面所列方程正确的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5708.如图所示的几何体,它的左视图是()A. B. C. D.9.提出“金山银山,不如绿水青山”,国家环保部大力治理环境污染,空气质量明显好转,将惠及13.75亿中国人,这个数字用科学记数法表示为()A.13.75×106B.13.75×105C.1.375×108D.1.375×10910.一、单选题在反比例函数的图象中,阴影部分的面积不等于4的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.对于一元二次方程,根的判别式中的表示的数是__________.12.若一个扇形的圆心角为60°,面积为6π,则这个扇形的半径为__________.13.科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为_____.14.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.15.七巧板是我们祖先的一项创造,被誉为“东方魔板”,如图所示是一副七巧板,若已知S△BIC=1,据七巧板制作过程的认识,求出平行四边形EFGH_____.16.如图,已知直线m∥n,∠1=100°,则∠2的度数为_____.17.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.三、解答题(共7小题,满分69分)18.(10分)阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.19.(5分)如图,∠AOB=45°,点M,N在边OA上,点P是边OB上的点.(1)利用直尺和圆规在图1确定点P,使得PM=PN;(2)设OM=x,ON=x+4,①若x=0时,使P、M、N构成等腰三角形的点P有个;②若使P、M、N构成等腰三角形的点P恰好有三个,则x的值是____________.20.(8分)服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元,计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)条件下,该服装店在5月1日当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?21.(10分)如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(–3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴于点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.22.(10分)某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?23.(12分)如图,已知一次函数y=x﹣3与反比例函数的图象相交于点A(4,n),与轴相交于点B.填空:n的值为,k的值为;以AB为边作菱形ABCD,使点C在轴正半轴上,点D在第一象限,求点D的坐标;考察反比函数的图象,当时,请直接写出自变量的取值范围.24.(14分)某校在一次大课间活动中,采用了四钟活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)这次调查中,一共调查了多少名学生?(2)求出扇形统计图中“B:跳绳”所对扇形的圆心角的度数,并补全条形图;(3)若该校有2000名学生,请估计选择“A:跑步”的学生约有多少人?

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】

根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A、总人数是:25÷50%=50(人),故A正确;B、步行的人数是:50×30%=15(人),故B错误;C、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C正确;D、骑车人数所占的比例是:1-50%-30%=20%,故D正确.由于该题选择错误的,故选B.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.2、D【解析】

利用三角形中位线定理求得AD的长度,然后由勾股定理来求BD的长度.【详解】解:∵矩形ABCD的对角线AC,BD相交于点O,

∴∠BAD=90°,点O是线段BD的中点,

∵点M是AB的中点,

∴OM是△ABD的中位线,

∴AD=2OM=1.

∴在直角△ABD中,由勾股定理知:BD=.

故选:D.【点睛】本题考查了三角形中位线定理和矩形的性质,利用三角形中位线定理求得AD的长度是解题的关键.3、B【解析】

试题解析:在方程4x2﹣2x+=0中,△=(﹣2)2﹣4×4×=0,∴一元二次方程4x2﹣2x+=0有两个相等的实数根.故选B.考点:根的判别式.4、D【解析】

根据已知条件中的数据计算出甲、乙的方差,中位数和众数后,再进行比较即可.【详解】把甲命中的环数按大小顺序排列为:6,6,7,8,8,故中位数为7;把乙命中的环数按大小顺序排列为:5,6,7,7,10,故中位数为7;∴甲、乙成绩的中位数相同,故选项B错误;根据表格中数据可知,甲的众数是8环,乙的众数是7环,∴甲、乙成绩的众数不同,故选项C错误;甲命中的环数的平均数为:x甲乙命中的环数的平均数为:x乙∴甲的平均数等于乙的平均数,故选项A错误;甲的方差S甲2=15[(6−7)2+(7−7)2+(8−7)2+(6−7)2乙的方差=15[(5−7)2+(10−7)2+(7−7)2+(6−7)2+(7−7)2因为2.8>0.8,所以甲的稳定性大,故选项D正确.故选D.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.同时还考查了众数的中位数的求法.5、C【解析】

先将每个选项的二次根式化简后再判断.【详解】解:A:,与不是同类二次根式;B:被开方数是2x,故与不是同类二次根式;C:=,与是同类二次根式;D:=2,与不是同类二次根式.故选C.【点睛】本题考查了同类二次根式的概念.6、D【解析】

根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项D符合.故选D【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.7、A【解析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm,根据草坪的面积是570m1,即可列出方程:(31−1x)(10−x)=570,故选A.8、A【解析】

从左面观察几何体,能够看到的线用实线,看不到的线用虚线.【详解】从左边看是等宽的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,

故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.9、D【解析】

用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】13.75亿=1.375×109.故答案选D.【点睛】本题考查的知识点是科学记数法,解题的关键是熟练的掌握科学记数法.10、B【解析】

根据反比例函数中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(|k|)=1.故选B.【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.二、填空题(共7小题,每小题3分,满分21分)11、-5【解析】

分清一元二次方程中,二次项系数、一次项系数和常数项,直接解答即可.【详解】解:表示一元二次方程的一次项系数.【点睛】此题考查根的判别式,在解一元二次方程时程根的判别式△=b2-4ac,不要盲目套用,要看具体方程中的a,b,c的值.a代表二次项系数,b代表一次项系数,c是常数项.12、6【解析】设这个扇形的半径为,根据题意可得:,解得:.故答案为.13、2.54×1【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2540000的小数点向左移动6位得到2.54,所以,2540000用科学记数法可表示为:2.54×1,故答案为2.54×1.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14、【解析】

先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.故答案为:.【点睛】本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.15、1【解析】

根据七巧板的性质可得BI=IC=CH=HE,因为S△BIC=1,∠BIC=90°,可求得BI=IC=,BC=1,在求得点G到EF的距离为sin45°,根据平行四边形的面积即可求解.【详解】由七巧板性质可知,BI=IC=CH=HE.又∵S△BIC=1,∠BIC=90°,∴BI•IC=1,∴BI=IC=,∴BC==1,∵EF=BC=1,FG=EH=BI=,∴点G到EF的距离为:,∴平行四边形EFGH的面积=EF•=1×=1.故答案为1【点睛】本题考查了七巧板的性质、等腰直角三角形的性质及平行四边形的面积公式,熟知七巧板的性质是解决问题的关键.16、80°.【解析】

如图,已知m∥n,根据平行线的性质可得∠1=∠3,再由平角的定义即可求得∠2的度数.【详解】如图,∵m∥n,∴∠1=∠3,∵∠1=100°,∴∠3=100°,∴∠2=180°﹣100°=80°,故答案为80°.【点睛】本题考查了平行线的性质,熟练运用平行线的性质是解决问题的关键.17、1【解析】

设购买篮球x个,则购买足球个,根据总价单价购买数量结合购买资金不超过3000元,即可得出关于x的一元一次不等式,解之取其中的最大整数即可.【详解】设购买篮球x个,则购买足球个,根据题意得:,解得:.为整数,最大值为1.故答案为1.【点睛】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三、解答题(共7小题,满分69分)18、(1)=x2+7+(2)见解析【解析】

(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用不等式的性质求出最小值即可.【详解】(1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,可得,解得:a=7,b=1,则原式=x2+7+;(2)由(1)可知,=x2+7+.∵x2≥0,∴x2+7≥7;当x=0时,取得最小值0,∴当x=0时,x2+7+最小值为1,即原式的最小值为1.19、(1)见解析;(2)①1;②:x=0或x=4﹣4或4<x<4;【解析】

(1)分别以M、N为圆心,以大于MN为半径作弧,两弧相交与两点,过两弧交点的直线就是MN的垂直平分线;(2)①分为PM=PN,MP=MN,NP=NM三种情况进行判断即可;②如图1,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;如图4,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【详解】解:(1)如图所示:(2)①如图所示:故答案为1.②如图1,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴当M与D重合时,即时,同理可知:点P恰好有三个;如图4,取OM=4,以M为圆心,以OM为半径画圆.则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或或故答案为x=0或或【点睛】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.20、(1)甲种服装最多购进75件,(2)见解析.【解析】

(1)设甲种服装购进x件,则乙种服装购进(100-x)件,然后根据购进这100件服装的费用不得超过7500元,列出不等式解答即可;(2)首先求出总利润W的表达式,然后针对a的不同取值范围进行讨论,分别确定其进货方案.【详解】(1)设购进甲种服装x件,由题意可知:80x+60(100-x)≤7500,解得x≤75答:甲种服装最多购进75件,(2)设总利润为W元,W=(120-80-a)x+(90-60)(100-x)即w=(10-a)x+1.①当0<a<10时,10-a>0,W随x增大而增大,∴当x=75时,W有最大值,即此时购进甲种服装75件,乙种服装25件;②当a=10时,所以按哪种方案进货都可以;③当10<a<20时,10-a<0,W随x增大而减小.当x=65时,W有最大值,即此时购进甲种服装65件,乙种服装35件.【点睛】本题考查了一元一次方程的应用,不等式的应用,以及一次函数的性质,正确利用x表示出利润是关键.21、(1)y=x2+2x﹣3;(2)点P坐标为(﹣1,﹣2);(3)点M坐标为(﹣1,3)或(﹣1,2).【解析】

(1)设平移后抛物线的表达式为y=a(x+3)(x-1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当或时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【详解】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1),∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同,∴平移后抛物线的二次项系数为1,即a=1,∴平移后抛物线的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则,解得,所以点P坐标为(﹣1,﹣2);(3)如图2,由得,即D(﹣1,1),则DE=OD=1,∴△DOE为等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当或时,以M、O、D为顶点的三角形△BOD相似,①若,则,解得DM=2,此时点M坐标为(﹣1,3);②若,则,解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD=135°是解题的关键.22、(1)A型足球进了40个,B型足球进了60个;(2)当x=60时,y最小=4800元.【解析】

(1)设A型足球x个,则B型足球(100-x)个,根据该店老板共花费了5200元列方程求解即可;(2)设进货款为y元,根据题意列出函数关系式,根据B型号足球数量不少于A型号足球数量的求出x的取值范围,然后根据一次函数的性质求解即可.【详解】解:(1)设A型足球x个,则B型足球(100-x)个,∴40x+60(100-x)=5200,解得:x=40,∴100-x=100-40=60个,答:A型足球进了40个,B型足球进了60个.(2)设A型足球x个,则B型足球(100-x)个,100-x≥,解得:x≤60,设进货款为y元,则y=40x+60(100-x)=-20x+6000,∵k=-20,∴y随x的增大而减小,∴当x=60时,y最小=4800元.【点睛】本题考查了一元一次方程的应用,一次函数的应用,仔细审题,找出解决问题所需的数量关系是解答本题的关键.23

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论