版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
知识点1:一元二次方程的基本概念1.一元二次方程3x2+5x-2=0的常数项是-2.2.一元二次方程3x2+4x-2=0的一次项系数为4,常数项是-2.3.一元二次方程3x2-5x-7=0的二次项系数为3,常数项是-7.4.把方程3x(x-1)-2=-4x化为一般式为3x2-x-2=0.知识点2:直角坐标系与点的位置1.直角坐标系中,点A(3,0)在y轴上。2.直角坐标系中,x轴上的任意点的横坐标为0.3.直角坐标系中,点A(1,1)在第一象限.4.直角坐标系中,点A(-2,3)在第四象限.5.直角坐标系中,点A(-2,1)在第二象限.知识点3:已知自变量的值求函数值1.当x=2时,函数y=的值为1.2.当x=3时,函数y=的值为1.3.当x=-1时,函数y=的值为1.知识点4:基本函数的概念及性质1.函数y=-8x是一次函数.2.函数y=4x+1是正比例函数.3.函数是反比例函数.4.抛物线y=-3(x-2)2-5的开口向下.5.抛物线y=4(x-3)2-10的对称轴是x=3.6.抛物线的顶点坐标是(1,2).7.反比例函数的图象在第一、三象限.知识点5:数据的平均数中位数与众数1.数据13,10,12,8,7的平均数是10.2.数据3,4,2,4,4的众数是4.3.数据1,2,3,4,5的中位数是3.知识点6:特殊三角函数值1.cos30°=.2.sin260°+cos260°=1.3.2sin30°+tan45°=2.4.tan45°=1.5.cos60°+sin30°=1.知识点7:圆的基本性质1.半圆或直径所对的圆周角是直角.2.任意一个三角形一定有一个外接圆.4.在同圆或等圆中,相等的圆心角所对的弧相等.5.同弧所对的圆周角等于圆心角的一半.6.同圆或等圆的半径相等.7.过三个点一定可以作一个圆.8.长度相等的两条弧是等弧.9.在同圆或等圆中,相等的圆心角所对的弧相等.10.经过圆心平分弦的直径垂直于弦。知识点8:直线与圆的位置关系1.直线与圆有唯一公共点时,叫做直线与圆相切.2.三角形的外接圆的圆心叫做三角形的外心.3.弦切角等于所夹的弧所对的圆心角.4.三角形的内切圆的圆心叫做三角形的内心.5.垂直于半径的直线必为圆的切线.6.过半径的外端点并且垂直于半径的直线是圆的切线.7.垂直于半径的直线是圆的切线.8.圆的切线垂直于过切点的半径.知识点9:圆与圆的位置关系1.两个圆有且只有一个公共点时,叫做这两个圆外切.2.相交两圆的连心线垂直平分公共弦.3.两个圆有两个公共点时,叫做这两个圆相交.4.两个圆内切时,这两个圆的公切线只有一条.5.相切两圆的连心线必过切点.知识点10:正多边形基本性质1.正六边形的中心角为60°.2.矩形是正多边形.3.正多边形都是轴对称图形.4.正多边形都是中心对称图形.知识点11:一元二次方程的解1.方程的根为.A.x=2B.x=-2C.x1=2,x2=-2D.x=42.方程x2-1=0的两根为.A.x=1B.x=-1C.x1=1,x2=-1D.x=23.方程(x-3)(x+4)=0的两根为.A.x1=-3,x2=4B.x1=-3,x2=-4C.x1=3,x2=4D.x1=3,x2=-44.方程x(x-2)=0的两根为.A.x1=0,x2=2B.x1=1,x2=2C.x1=0,x2=-2D.x1=1,x2=-25.方程x2-9=0的两根为.A.x=3B.x=-3C.x1=3,x2=-3D.x1=+,x2=-知识点12:方程解的情况及换元法1.一元二次方程的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.不解方程,判别方程3x2-5x+3=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.不解方程,判别方程3x2+4x+2=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根4.不解方程,判别方程4x2+4x-1=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根5.不解方程,判别方程5x2-7x+5=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.不解方程,判别方程5x2+7x=-5的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.不解方程,判别方程x2+4x+2=0的根的情况是.A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根8.不解方程,判断方程5y+1=2y的根的情况是A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根9.A.y-5y+4=0B.y-5y-4=0C.y-4y-5=0D.y+4y-5=010.A.5y-4y+1=0B.5y-4y-1=0C.-5y-4y-1=0D.-5y-4y-1=011.用换元法解方程()2-5()+6=0时,设=y,则原方程化为关于y的方程是.A.y2+5y+6=0B.y2-5y+6=0C.y2+5y-6=0D.y2知识点13:自变量的取值范围1.函数中,自变量x的取值范围是A.x≠2B.x≤-2C.x≥-2D.x≠-22.函数y=的自变量的取值范围是.A.x>3B.x≥3C.x≠3D.x为任意实数3.函数y=的自变量的取值范围是.A.x≥-1B.x>-1C.x≠1D.x≠-14.函数y=的自变量的取值范围是.A.x≥1B.x≤1C.x≠1D.x为任意实数5.函数y=的自变量的取值范围是.A.x>5B.x≥5C.x≠5D.x为任意实数知识点14:基本函数的概念1.下列函数中,正比例函数是A.y=-8xB.y=-8x+1C.y=8x2+12.A.B.C.3.A.1个B.2个C.3个D.4个知识点15:圆的基本性质1.如图,四边形ABCD内接于⊙O,已知∠C=80°,则∠A的度数是A.50°B.80°C.90°D.100°2.圆周角∠BAD=°,则圆周角∠BCDA.100°B.130°C.80°D.50°3.圆心角∠BOD=°,则圆周角∠BCDA.100°B.130°C.80°D.50°4.已知:如图,四边形ABCD内接于A.∠A+∠C=180°B.∠A+∠C=90°C.∠A+∠B=180°D.∠A+∠B=905.半径为5cm的圆中,有一条长为6cm的弦,则圆心到此弦的距离为.A.3cmB.4cmC.5cmD.6cm6.已知:如图,圆周角∠BAD=50°,则圆心角∠BOD的度数是.A.100°B.130°C.80°D.507.°,则圆周角∠ACBA.100°B.130°C.200°D.508.圆周角∠BCD=°,则圆心角∠BODA.100°B.130°C.80°D.50°9.在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O的半径为cm.A.3B.4C.5D.1010.°,则圆周角∠ACBA.100°B.130°C.200°D.50°12.在半径为5cm的圆中,有一条弦长为6cm,则圆心到此弦的距离为.A.3cmB.4cmC.5cmD.6cm知识点16:点、直线和圆的位置关系1.已知⊙O的半径为10㎝,如果一条直线和圆心O的距离为10㎝,那么这条直线和这个圆的位置关系为A.相离B.相切C.相交D.相交或相离2.已知圆的半径为6.5cm,直线l和圆心的距离为7cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.相离或相交3.A.点在圆上B.点在圆内C.点在圆外D.不能确定4.已知圆的半径为6.5cm,直线l和圆心的距离为4.5cm,那么这条直线和这个圆的公共点的个数是.A.0个B.1个C.2个D.不能确定5.一个圆的周长为acm,面积为acm2,如果一条直线到圆心的距离为πcm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定6.已知圆的半径为6.5cm,直线l和圆心的距离为6cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.不能确定7.已知圆的半径为6.5cm,直线l和圆心的距离为4cm,那么这条直线和这个圆的位置关系是.A.相切B.相离C.相交D.相离或相交8.A.点在圆上B.点在圆内C.点在圆外D.不能确定知识点17:圆与圆的位置关系1.⊙O1和⊙O2的半径分别为3cm和4cm,若O1O2=10cm,则这两圆的位置关系是A.外离B.外切C.相交D.内切2.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的位置关系是.A.内切B.外切C.相交D.外离3.已知⊙O1、⊙O2的半径分别为3cm和5cm,若O1O2=1cm,则这两个圆的位置关系是.A.外切B.相交C.内切D.内含4.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2==7cm,则这两个圆的位置关系是.A.外离B.外切C.相交D.内切5.已知⊙O1、⊙O2的半径分别为3cm和4cm,两圆的一条外公切线长4,则两圆的位置关系是.A.外切B.内切C.内含D.相交6.已知⊙O1、⊙O2的半径分别为2cm和6cm,若O1O2=6cm,则这两个圆的位置关系是.A.外切B.相交C.内切D.内含知识点18:公切线问题1.如果两圆外离,则公切线的条数为.A.1条B.2条C.3条D.4条2.如果两圆外切,它们的公切线的条数为.A.1条B.2条C.3条D.4条3.如果两圆相交,那么它们的公切线的条数为.A.1条B.2条C.3条D.4条4.如果两圆内切,它们的公切线的条数为.A.1条B.2条C.3条D.4条5.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=9cm,则这两个圆的公切线有条.A.1条B.2条C.3条D.4条6.已知⊙O1、⊙O2的半径分别为3cm和4cm,若O1O2=7cm,则这两个圆的公切线有条.A.1条B.2条C.3条D.4条知识点19:正多边形和圆1.如果⊙O的周长为10πcm,那么它的半径为A.5cmB.cmC.10cmD.5πcm2.正三角形外接圆的半径为2,那么它内切圆的半径为.A.2B.C.1D.3.已知,正方形的边长为2,那么这个正方形内切圆的半径为.A.2B.1C.D.4.扇形的面积为,半径为2,那么这个扇形的圆心角为=.A.30°B.60°C.90°D.120°5.已知,正六边形的半径为R,那么这个正六边形的边长为.A.RB.RC.RD.6.圆的周长为C,那么这个圆的面积S=.A.B.C.D.7.正三角形内切圆与外接圆的半径之比为.A.1:2B.1:C.:2D.1:8.圆的周长为C,那么这个圆的半径R=.A.2B.C.D.9.已知,正方形的边长为2,那么这个正方形外接圆的半径为.A.2B.4C.2D.210.已知,正三角形的半径为3,那么这个正三角形的边长为.A.3B.C.3D.3知识点20:函数图像问题1.已知:关于x的一元二次方程的一个根为,且二次函数的对称轴是直线x=2,则抛物线的顶点坐标是A.(2,-3)B.(2,1)C.(2,3)D.(3,2)2.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是.A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)3.一次函数y=x+1的图象在.A.4.函数y=2x+1的图象不经过.5.反比例函数y=的图象在.6.反比例函数y=-的图象不经过.7.若抛物线的解析式为y=2(x-3)2+2,则它的顶点坐标是.A.(-3,2)B.(-3,-2)C.(3,2)D.(3,-2)8.一次函数y=-x+1的图象在.9.一次函数y=-2x+1的图象经过.10.已知抛物线y=ax2+bx+c(a>0且a、b、c为常数)的对称轴为x=1,且函数图象上有三点A(-1,y1)、B(,y2)、C(2,y3),则y1、y2、y3的大小关系是.A.y3<y1<y2B.y2<y3<y1C.y3<y2<y1D.y1<y3<y知识点21:分式的化简与求值1.计算:的正确结果为.A.B.C.D.2.计算:1-(的正确结果为.A.B.C.-D.-3.计算:的正确结果为.A.xB.C.-D.-4.计算:的正确结果为.A.1B.x+1C.D.5.计算的正确结果是.A.B.-C.D.-6.计算的正确结果是.A.B.-C.D.-7.计算:的正确结果为.A.x-yB.x+yC.-(x+y)D.y-x8.计算:的正确结果为.A.1B.C.-1D.9.计算的正确结果是.A.B.C.-D.-知识点22:二次根式的化简与求值1.已知xy>0,化简二次根式的正确结果为.A.B.C.-D.-2.化简二次根式的结果是.A.B.-C.D.3.若a<b,化简二次根式的结果是.A.B.-C.D.-4.若a<b,化简二次根式的结果是.A.B.-C.D.5.化简二次根式的结果是.A.B.C.D.6.若a<b,化简二次根式的结果是.A.B.-C.D.7.已知xy<0,则化简后的结果是.A.B.-C.D.8.若a<b,化简二次根式的结果是.A.B.-C.D.9.若b>a,化简二次根式a2的结果是.A.B.C.D.10.化简二次根式的结果是.A.B.-C.D.11.若ab<0,化简二次根式的结果是.A.bB.-bC.bD.-b知识点23:方程的根1.当m=时,分式方程会产生增根.A.1B.2C.-1D.22.分式方程的解为.A.x=-2或x=0B.x=-2C.x=0D.方程无实数根3.用换元法解方程,设=y,则原方程化为关于y的方程.A.y+2y-5=0B.y+2y-7=0C.y+2y-3=0D.y+2y-9=04.方程(a-1)x2+2ax+a2+5=0有一个根是x=-3,则a的值为A.-4B.1C.-4或1D.4或-15.关于x的方程有增根,则实数a为.A.a=1B.a=-1C.a=±1D.a=26.二次项系数为1的一元二次方程的两个根分别为--、-,则这个方程是A.x+2x-1=0B.x+2x+1=0C.x-2x-1=0D.x-2x+1=07.已知关于x的一元二次方程(k-3)x2-2kx+k+1=0有两个不相等的实数根,则k的取值范围是.A.k>-B.k>-且k≠3C.k<-D.k>且k≠3知识点24:求点的坐标1.已知点P的坐标为(2,2),PQ‖x轴,且PQ=2,则Q点的坐标是.(4,2)(0,2)或(4,2)(0,2)(2,0)或(2,4)2.如果点P到x轴的距离为3,到y轴的距离为4,且点P在第四象限内,则P点的坐标为.A.(3,-4)B.(-3,4)C.4,-3)D.(-4,3)3.过点P(1,-2)作x轴的平行线l1,过点Q(-4,3)作y轴的平行线l2,l1、l2相交于点A,则点A的坐标是.(1,3)(-4,-2)(3,1)(-2,-4)知识点25:基本函数图像与性质1.若点A(-1,y1)、B(-,y2)、C(,y3)在反比例函数y=(k<0)的图象上,则下列各式中不正确的是.A.y3<y1<y2B.y2+y3<0C.y1+y3<0D.y1•y3•y2<02.y1<y2,则m的取值范围是.A.m>2B.m<2C.m<0D.m>03.已知:如图,过原点O的直线交反比例函数y=的图象于A、B两点,AC⊥x轴,AD⊥y轴,△ABC的面积为S,则.A.S=2B.2<S<4C.S=4D.S>44.已知x1,y1)、(x2,y2)在的图象上,①图象在第二、四象限;②y随x的增大而增大;③当0<x1<x2时,y1<y2;A.1个B.2个C.3个D.4个5.若反比例函数的图象与直线y=-x+2有两个不同的交点A、B,且∠AOB<90º,则k的取值范围必是.A.k>1B.k<1C.0<k<1D.k<06.若点(,)是反比例函数的图象上一点,则此函数图象与直线y=-x+b(|b|<2)的交点的个数为.A.0B.1C.2D.47.已知直线与双曲线交于A(x1,y1),B(x2,y2)两点,则x1·x2的值.A.与k有关,与b无关B.与k无关,与b有关C.与k、b都有关D.与k、b都无关知识点26:正多边形问题1..A.B.C.D.2.为了营造舒适的购物环境,某商厦一楼营业大厅准备装修地面.现选用了边长相同的正四边形、正八边形这两种规格的花岗石板料镶嵌地面,则在每一个顶点的周围,正四边形、正八边形板料铺的个数分别是.A.2,1B.1,2C.1,3D.3,13.选用下列边长相同的两种正多边形材料组合铺设地面,能平整镶嵌的组合方案是.A.正四边形、正六边形B.正六边形、正十二边形C.正四边形、正八边形D.正八边形、正十二边形4.用几何图形材料铺设地面、墙面等,可以形成各种美丽的图案.张师傅准备装修客厅,想用同一种正多边形形状的材料铺成平整、无空隙的地面,下面形状的正多边形材料,他不能选用的是.A.正三边形B.正四边形C.正五边形D.正六边形5.我们常见到许多有美丽图案的地面,它们是用某些正多边形形状的材料铺成的,这样的材料能铺成平整、无空隙的地面.某商厦一楼营业大厅准备装修地面.现有正三边形、正四边形、正六边形、正八边形这四种规格的花岗石板料(所有板料边长相同),若从其中选择两种不同板料铺设地面,则共有种不同的设计方案.A.2种B.3种C.4种D.6种6.用两种不同的正多边形形状的材料装饰地面,它们能铺成平整、无空隙的地面.选用下列边长相同的正多边形板料组合铺设,不能平整镶嵌的组合方案是.A.正三边形、正四边形B.正六边形、正八边形C.正三边形、正六边形D.正四边形、正八边形7.用两种正多边形形状的材料有时能铺成平整、无空隙的地面,并且形成美丽的图案,下面形状的正多边形材料,能与正六边形组合镶嵌的是(所有选用的正多边形材料边长都相同).A.正三边形B.正四边形C.正八边形D.正十二边形8.用同一种正多边形形状的材料,铺成平整、无空隙的地面,下列正多边形材料,不能选用的是.A.正三边形B.正四边形C.正六边形D.正十二边形9.用两种正多边形形状的材料,有时既能铺成平整、无空隙的地面,同时还可以形成各种美丽的图案.下列正多边形材料(所有正多边形材料边长相同),不能和正三角形镶嵌的是.A.正四边形B.正六边形C.正八边形D.正十二边形知识点27:科学记数法1.为了估算柑桔园近三年的收入情况,某柑桔园的管理人员记录了今年柑桔园中某五株柑桔树的柑桔产量,结果如下(单位:公斤):100,98,108,96,102,101.这个柑桔园共有柑桔园2000株,那么根据管理人员记录的数据估计该柑桔园近三年的柑桔产量约为公斤.A.2×105B.6×105C.2.02×105D.6.06×2.为了增强人们的环保意识,某校环保小组的六名同学记录了自己家中一周内丢弃的塑料袋数量,结果如下(单位:个):25,21,18,19,24,19.武汉市约有200万个家庭,那么根据环保小组提供的数据估计全市一周内共丢弃塑料袋的数量约为.A.4.2×108B.4.2×107C.4.2×106D.4.2×10知识点28:数据信息题1.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A.45B.51C.54D.572.某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图,是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的频率分布直方图,已知从左到右前4个小组频率分别为0.02,0.1,0.12,0.46.下列说法:①学生的成绩≥27分的共有15人;②学生成绩的众数在第四小组(22.5~26.5)内;③学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法是.A.①②B.②③C.①③D.①②③3.直方图所示.下列结论,其中正确的是.A.报名总人数是10人;B.报名人数最多的是“13岁年龄组”;C.各年龄组中,女生报名人数最少的是“8岁年龄组”;D.报名学生中,小于11岁的女生与不小于12岁的男生人数相等.4.某校初三年级举行科技知识竞赛,50名参赛学生的最后得分(成绩均为整数)的频率分布直方图如图,从左起第一、二、三、四、五个小长方形的高的比是1:2:4:2:1,根据图中所给出的信息,下列结论,其中正确的有.①本次测试不及格的学生有15人;②69.5—79.5这一组的频率为0.4;③A①②③B①②C②③D①③5.某校学生参加环保知识竞赛,将参赛学生的成绩(得分取整数)进行整理后分成五组,绘成频率分布直方图如图,图中从左起第一、二、三、四、五个小长方形的高的比是1:3:6:4:2,第五组的频数为6,则成绩在60分以上(含60分)的同学的人数.A.43B.44C.45D.486.对某班60名学生参加毕业考试成绩(成绩均为整数)整理后,画出频率分布直方图,如图所示,则该班学生及格人数为.A45B51C54D577.某班学生一次数学测验成绩(成绩均为整数)进行统计分析,各分数段人数如图所示,下列结论,其中正确的有()①该班共有50人;②49.5—59.5这一组的频率为0.08;③本次测验分数的中位数在79.5—89.5这一组;④学生本次测验成绩优秀(80分以上)的学生占全班人数的56%.A.①②③④B.①②④C.②③④D.①③④8.为了增强学生的身体素质,在中考体育中考中取得优异成绩,某校初三(1)班进行了立定跳远测试,并将成绩整理后,绘制了频率分布直方图(测试成绩保留一位小数),如图所示,已知从左到右4个组的频率分别是0.05,0.15,0.30,0.35,第五小组的频数为9,若规定测试成绩在2米以上(含2米)为合格,则下列①初三(1)班共有60名学生;②第五小组的频率为0.15;③该班立定跳远成绩的合格率是80%.A.①②③B.②③C.①③D.①②知识点29:增长率问题1.今年我市初中毕业生人数约为12.8万人,比去年增加了9%,预计明年初中毕业生人数将比今年减少9%.下列说法:①去年我市初中毕业生人数约为万人;②按预计,明年我市初中毕业生人数将与去年持平;③按预计,明年我市初中毕业生人数会比去年多.其中正确的是.A.①②B.①③C.②③D.①2.根据湖北省对外贸易局公布的数据:2002年我省全年对外贸易总额为16.3亿美元,较2001年对外贸易总额增加了10%,则2001年对外贸易总额为亿美元.A.B.C.D.3.某市前年80000初中毕业生升入各类高中的人数为44000人,去年升学率增加了10个百分点,如果今年继续按此比例增加,那么今年110000初中毕业生,升入各类高中学生数应为.A.71500B.82500C.59400D.6054.我国政府为解决老百姓看病难的问题,决定下调药品价格.某种药品在2001年涨价30%后,2003年降价70%后至78元,则这种药品在2001年涨价前的价格为元.78元B.100元C.156元D.200元5.某种品牌的电视机若按标价降价10%出售,可获利50元;若按标价降价20%出售,则亏本50元,则这种品牌的电视机的进价是元.()A.700元B.800元C.850元D.1000元6.从1999年11月1日起,全国储蓄存款开始征收利息税的税率为20%,某人在2001年6月1日存入人民币10000元,年利率为2.25%,一年到期后应缴纳利息税是元.A.44B.45C.46D.487.某商品的价格为a元,降价10%后,又降价10%,销售量猛增,商场决定再提价20%出售,则最后这商品的售价是元.A.a元B.1.08a元C.0.96a元D.0.972a元8.某商品的进价为100元,商场现拟定下列四种调价方案,其中0<n<m<100,则调价后该商品价格最高的方案是.A.先涨价m%,再降价n%B.先涨价n%,再降价m%C.先涨价%,再降价%D.先涨价%,再降价%9.一件商品,若按标价九五折出售可获利512元,若按标价八五折出售则亏损384元,则该商品的进价为.A.1600元B.3200元C.6400元D.8000元10.自1999年11月1日起,国家对个人在银行的存款利息征收利息税,税率为20%(即存款到期后利息的20%),储户取款时由银行代扣代收.某人于1999年11月5日存入期限为1年的人民币16000元,年利率为2.25%,到期时银行向储户支付现金元.16360元B.16288C.16324元D.16000元知识点30:圆中的角1.已知:如图,⊙O1、⊙O2外切于点C,AB为外公切线,AC的延长线交⊙O1于点D,若AD=4AC,则∠ABC的度数为.A.15°B.30°C.45°D.60°2.已知:如图,PA、PB为⊙O的两条切线,A、B为切点,AD⊥PB于D点,AD交⊙O于点E,若∠DBE=25°,则∠P=.A.75°B.60°C.50°D.45°3.A.60°B.65°C.70°D.75°4.EBA、EDC是°,且AB=2ED,则∠E.A.30°B.35°C.45°D.755.已知:如图,Rt△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径作⊙O与BC相切于点D,与AC相交于点E,若∠ABC=40°,则∠CDE=.A.40°B.20°C.25°D.30°6.已知:如图,在⊙O的内接四边形ABCD中,AB是直径,∠BCD=130º,过D点的切线PD与直线AB交于P点,则∠ADP的度数为A.40ºB.45ºC.50ºD.65º7.°,则弧AB的度数为A.70°B.90°C.110°D.1308.已知:如图,⊙O1与⊙O2外切于点P,⊙O1的弦AB切⊙O2于C点,若∠APB=30º,则∠BPC=.A.60ºB.70ºC.75ºD.90º知识点31:三角函数与解直角三角形1.在学习了解直角三角形的知识后,小明出了一道数学题:我站在综合楼顶,看到对面教学楼顶的俯角为30º,楼底的俯角为45º,两栋楼之间的水平距离为20米,请你算出教学楼的高约为米.(结果保留两位小数,≈1.4,≈1.7)A.8.66B.8.67C.10.67D.16.672.在学习了解直角三角形的知识后,小明出了一道数学题:我站在教室门口,看到对面综合楼顶的仰角为30º,楼底的俯角为45º,两栋楼之间的距离为20米,请你算出对面综合楼的高约为米.(≈1.4,≈1.7)A.31B.35C.39D.543.α,β,则sinα:sinβA.B.C.2D.44.如图,是一束平行的阳光从教室窗户射入的平面示意图,光线与地面所成角∠AMC=30°,在教室地面的影子MN=2米.若窗户的下檐到教室地面的距离BC=1米,则窗户的上檐到教室地面的距离AC为米.A.2米B.3米C.3.2米D.米5.已知△ABC中,BD平分∠ABC,DE⊥BC于E点,且DE:BD=1:2,DC:AD=3:4,CE=,BC=6,则△ABC的面积为.A.B.12C.24D.12知识点32:圆中的线段1.已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连结AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为A.B.C.2D.32.已知:如图,⊙O1、⊙O2内切于点A,⊙O1的直径AB交⊙O2于点C,O1E⊥AB交⊙O2于F点,BC=9,EF=5,则CO1=A.9B.13C.14D.163.A.2:7B.2:5C.2:3D.1:34.A.2B.3C.4D.56.A.B.C.D.4.已知:如图,RtΔABC,∠C=90°,AC=4,BC=3,⊙O1内切于ΔABC,⊙O2切BC,且与AB、AC的延长线都相切,⊙O1的半径R1,⊙O2的半径为R2,则=.A.B.C.D.5.A.4cmB.3.5cmC.7cmD.8cm6.已知:如图,CD为⊙O的直径,AC是⊙O的切线,AC=2,过A点的割线AEF交CD的延长线于B点,且AE=EF=FB,则⊙O的半径为.A.B.C.D.7.已知:如图,ABCD,过B、C、D三点作⊙O,⊙O切AB于B点,交AD于E点.若AB=4,CE=5,则DE的长为.A.2B.C.D.18.如图,⊙O1、⊙O2内切于P点,连心线和⊙O1、⊙O2分别交于A、B两点,过P点的直线与⊙O1、⊙O2分别交于C、D两点,若∠BPC=60º,AB=2,则CD=.A.1B.2C.D.知识点33:数形结合解与函数有关的实际问题1.某学校组织学生团员举行“抗击非典,爱护城市卫生”宣传活动,从学校骑车出发,先上坡到达A地,再下坡到达B地,其行程中的速度v(百米/分)与时间t(分)关系图象如图所示.若返回时的上下坡速度仍保持不变,那么他们从B地返回学校时的平均速度为百米/分.B.C.D.2.有一个附有进出水管的容器,每单位时间进、出的水量都是一定的.设从某一时刻开始5分钟内只进水不出水,在接着的2分钟内只出水不进水,又在随后的15分钟内既进水又出水,刚好将该容器注满.已知容器中的水量y升与时间x分之间的函数关系如图所示.则在第7分钟时,容器内的水量为升.A.15B.16C.17D.183.甲、乙两个个队完成某项工程,首先是甲单独做了10天,然后乙队加入合做,完成剩下的全部工程,设工程总量为单位1,工程进度满足如图所示的函数关系,那么实际完成这项工程所用的时间比由甲单独完成这项工程所需时间少.A.12天B.13天C.14天D.15天4.某油库有一储油量为40吨的储油罐.在开始的一段时间内只开进油管,不开出油管;在随后的一段时间内既开进油管,又开出油管直至储油罐装满油.若储油罐中的与的函数关系如图所示.现将装满油的储油罐只开出油管,不开进油管,则放完全部油所需的时间是分钟.A.16分钟B.20分钟C.24分钟D.44分钟5.校办工厂某产品的生产流水线每小时可生产100件产品,生产前没有积压.生产3小时后另安排工人装箱(生产未停止),若每小时装产品150件,未装箱的产品数量y是时间t的函数,则这个函数的大致图像只能是.ABCD6.如图,某航空公司托运行李的费用y(元)与托运行李的重量x(公斤)的关系为一次函数,由图中可知,行李不超过公斤时,可以免费托运.A.18B.19C.20D.217.小明利用星期六、日双休骑自行车到城外小姨家去玩.星期六从家中出发,先上坡,后走平路,再走下坡路到小姨家.行程情况如图所示.星期日小明又沿原路返回自己家.若两天中,小明上坡、平路、下坡行驶的速度相对不变,则星期日,小明返回家的时间是分钟.30分钟B.38分钟C.41分钟D.43分钟8.有一个附有进、出水管的容器,每单位时间进、出的水量都是一定的,设从某时刻开始5分钟内只进不出水,在随后的15分钟内既进水又出水,容器中的水量y(升)与时间t(分)之间的函数关系图像如图,若20分钟后只出水不进水,则需分钟可将容器内的水放完.A.20分钟B.25分钟C.分钟D.分钟9.由于自行车发生故障,停下修车耽误了几分钟.为了按时到校,这位学生加快了速度,仍保持匀速前进,结果准时到达学校,这位学生的自行车行进路程S(千米)与行进时间t(分钟)的函数关系如右图所示,则这位学生修车后速度加快了千米/分.A.5B.7.5C.10D.12.510.某工程队接受一项轻轨建筑任务,计划从2002年6月初至2003年5月底(12个月)完成,施工3个月后,实行倒计时,提高工作效率,施工情况如图所示,那么按提高工作效率后的速度做完全部工程,可提前A.10.5个月B.6个月C.3个月D.1.5个月知识点34:二次函数图像与系数的关系1.如图,抛物线y=ax2+bx+c图象,则下列结论中:①abc>0;②2a+b<0;③a>;④c<1.其中正确的结论是.A.①②③B.①③④C.①②④D.②③④2.②;③a>;④b>1..A.①②B.②③C.③④D.②④3.是.①abc>0②a+b+c>0③c>a④2c>bA.①②③④B.①③④C.①②④D.①②③4.已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0),(x1,0),且1<x1<2,与y轴的正半轴的交点在点(0,2)的上方.下列结论:①a<b<0;②2a+c>0;③4a+c<0;④2a-b+1>0.其中正确结论的个数为.A1个B2个C3个D4个5.是.①abc>0②>-1③b<-1④5a-2b<0A.①②③④B.①③④C.①②④D.①②③6.其中正确的个数是. A.①④B.②③④C.①③④D.②③7.是.A.a>b>cB.a>c>bC.a>b=cD.a、b、c的大小关系不能确定8.如图,抛物线y=ax2+bx+c图象与x轴交于A(x1,0)、B(x2,0)两点,则下列结论中:①2a+b<0;②a<-1;③a+b+c>0;④0<b2-4a<5a2.其中正确的结论有个.A.1个B.2个C.3个D.4个9.是.①b=2a②a-b+c>-1③0<b2-4ac<4④ac+1=bA.1个B.2个C.3个D.4个10..A.1个B.2个C.3个D.4个知识点35:多项选择问题已知:如图,△ABC中,∠A=60º,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E,连结DE、OE.下列结论:①BC=2DE;②D点到OE的距离不变;③BD+CE=2DE;④OE为△ADE外接圆的切线.其中正确的结论是.A.①②B.③④C.①②③D.①②④2.已知:如图,⊙O是△ABC的外接圆,AD⊥BC,CE⊥AB,D、E分别为垂足,AD交CE于H点,交⊙O于N,OM⊥BC,M为垂足,BO延长交⊙O于F点,下列结论:其中正确的有.①∠BAO=∠CAH;②DN=DH;③四边形AHCF为平行四边形;④CH•EH=OM•HN.A.①②③B.②③④C.①③④D.①②③④3.已知:如图,P为⊙O外一点,PA、PB切⊙O于A⊙O于点C,连结BO交延长分别交⊙O及切线PA于D下列结论:①AD∥PO;②ΔADE∽ΔPCB;③tan∠EAD=;④BD2=2AD•OP.其中正确的有.A.①②④B.③④C.①③④D.①④4.已知:如图,PA、PB为,交AB于E,AF为下列结论:①∠ABP=∠ABCF;③PC•PD=PE•PO;④∠OFE=∠OPF.其中正确的有.A.①②③④B.①②③C.①③④D.①②④5.已知:如图,∠ACB=90º,以AC为直径的⊙O交AB于D点,过D作⊙O的切线交BC于E点,EF⊥AB于F点,连OE交DC于P,则下列结论:其中正确的有.①BC=2DE;②OE∥AB;③DE=PD;④AC•DF=DE•CD.A.①②③B.①③④C.①②④D.①②③④6.已知:如图,M为⊙O上的一点,⊙M与⊙O相交于A、B两点,P为⊙O上任意一点,直线PA、PB分别交⊙M于C、D两点,直线CD交⊙O于E、F两点,连结PE、PF、BC,下列结论:其中正确的有.①PE=PF;②PE2=PA·PC;③EA·EB=EC·ED;④(其中R、r分别为⊙O、⊙M的半径).A.①②③B.①②④C.②④D.①②③④7.已知:如图,⊙O1、⊙O2相交于A、B两点,PA切⊙O1于A,交⊙O2于P,PB的延长线交⊙O1于C,CA的延长线交⊙O2于D,E为⊙O1上一点,AE=AC,EB延长线交⊙O2于F,连结AF、DF、PD,下列结论:①PA=PD∠CAE=∠APD;③;④AF2=PB•EF.其中正确的有.A.①②③B.②③④C.①③④D.①②③④8.已知:如图,P为两圆外公切线上的一点,的割线PBC切于D点,AD延长交于E点,连结AB、AC、O1D、O2E,下列结论:①PA=PD;③PD2=PB•PC;④O1D‖O2E.其中正确的有.A.①②④B.②③④C.①③④D.①②③④9.已知:如图,P为,PA切A点,CD⊥PA,D为垂足,CD交⊥BC于E,CM①AB=AF;③DF•DC=OE•PE;④PN=AN.其中正确的有.A.①②③④B.②③④C.①③④D.①②④10.其中正确的有.①CE=CF△APC∽△;③PC•PD=PA•PB;④DE为.A.①②③B.②③④C.①③④D.①②③④知识点36:因式分解1.分解因式:x2-x-4y2+2y=.2.分解因式:x3-xy2+2xy-x=.3.分解因式:x2-bx-a2+ab=.4.分解因式:x2-4y2-3x+6y=.5.分解因式:-x3-2x2-x+4xy2=.6.分解因式:9a2-4b2-6a+1=7.分解因式:x2-ax-y2+ay=.8.分解因式:x3-y3-x2y+xy2=.9.分解因式:4a2-b2-4a+1=.知识点37:找规律问题1.阳阳和明明玩上楼梯游戏,规定一步只能上一级或二级台阶,玩着玩着两人发现:当楼梯的台级数为一级、二级、三级、……逐步增加时,楼梯的上法依次为:1,2,3,5,8,13,21,……(这就是著名的斐波拉契数列).请你仔细观察这列数的规律后回答:上10级台阶共有种上法.2.把若干个棱长为a的立方体摆成如图形状:从上向下数,摆一层有1个立方体,摆二层共有4个立方体,摆三层共有10个立方体,那么摆五层共有个立方体.3.下面由“*”拼出的一列形如正方形的图案,每条边上(包括两个顶点)有n(n>1)个“*”,每个图形“*”的总数是S:n=2,S=4n=3,S=8n=4,S=12n=5,S=16通过观察规律可以推断出:当n=8时,S=.4.下面由火柴杆拼出的一列图形中,第n个图形由n个正方形组成:……n=1n=2n=3n=4……通过观察发现:第n个图形中,火柴杆有根.5.已知P为△ABC的边BC上一点,△ABC的面积为a,B1、C1分别为AB、AC的中点,则△PB1C1的面积为,B2、C2分别为BB1、CC1的中点,则△PB2C2的面积为,B3、C3分别为B1B2、C1C2的中点,则△PB3C3的面积为按此规律……可知:△PB5C5的面积为.6.如图,用火柴棒按平行四边形、等腰梯形间隔方式搭图形.按照这样的规律搭下去……若图形中平行四边形、等腰梯形共11个,需要根火柴棒.7.如图的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形.根据图中的数构成的规律可得:图中a所表示的数是.8.在同一平面内:两条直线相交有个交点,三条直线两两相交最多有个交点,四条直线两两相交最多有个交点,……那么8条直线两两相交最多有个交点.9.观察下列等式根据前面各式规律可得:13+23+33+43+53+63+73+83=.知识点38:已知结论寻求条件问题1.如图,AC为⊙O的直径,PA是⊙O的切线,切点为A,PBC是⊙O的割线,∠BAC的平分线交BC于D点,PF交AC于F点,交AB于E点,要使AE=AF,则PF应满足的条件是.(只需填一个条件)2.已知:如图,AB为直径,P为AB延长线上的一点,PC切要使得AC=PC应满足的条件是.3.已知四边形ABCD内接于,过A作若它的边满足条件,则有ΔABP∽ΔCDA.4.已知:ΔABC中,D为BC上的一点,过A点的⊙O切BC于D点,交AB、AC于E、F两点,要使BC‖EF,则AD必满足条件.5.已知:如图,AB为⊙O的直径,D为弧AC上一点,DE⊥AB于E,DE、DB分别交弦AC于F、G两点,要使得DE=DG,则图中的弧必满足的条件是.6.已知:如图,Rt△ABC中,以AB为直径作⊙O交BC于D点,E为AC上一点,要使得AE=CE,请补充条件(填入一个即可).7.已知:如图,圆内接四边形ABCD,对角线ACBD相交于E点,•8.已知,ΔABC内接于OΔABC的边满足的是.9.已知:如图,ΔABC内接于⊙O,D为劣弧AB上一点,E是BC延长线上一点,AE交⊙O于F,为使ΔADB∽ΔACE,应补充的一个条件是,或.10.已知:如图,以△ABC的边AB为直径作,DE⊥AC,E为垂足,要使得DE为△ABC的边必满足的条件是.知识点39:阴影部分面积问题1.如图,梯形ABCD中,AD∥BC,∠D=90°,以AB为直径的⊙O切CD于E点,交BC于F,若AB=4cm,AD=1cm,则图中阴影部分的面积是cm2.(不用近似值)2.AB⊥AC,AE⊥BC,以AE为直径作以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=2,CE=6,则图中阴影部分的面积为.3.已知:如图,内含,直线于F点,若AC=1cm,则弧CF、AE与线段AC弧、EF弧围成的阴影部分cm2.4.已知:如图,AB为的直径,以为直径作MN与.5.已知:如图,等边△ABC内接于⊙O1,以AB为直径作⊙O2,AB=2,则图中阴影部分的面积为.6.已知:如图,边长为12的等边三角形,形内有4个等圆,则图中阴影部分的面积为.7.已知:如图,直角梯形ABCD中,ADBC=4,∠A=90°,以A为圆心,AB为半径作扇形ABD,以BC为直径作半圆,则图中阴影部分的面积为.8.AB⊥AC,AE⊥BC,以AE为直径作以A为圆心,AE为半径作弧交AB于F点,交AD于G点,若BE=6,CE=2,则图中阴影部分的面积为.9.已知:如图,⊙O的半径为1cm,AO交⊙O于C,AO=2cm,AB与⊙O相切于B点,弦CD‖AB,则图中阴影部分的面积是.10.已知:如图,以⊙O的半径OA为直径作⊙O1,O1B⊥OA交⊙O于B,OB交⊙O1于C,OA=4,则图中阴影部分的面积为.初中数学助记口诀有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
一元一次方程:已知未知要分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n
平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)
单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数进行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
分式方程的解法步骤:同乘最简公分母,化成整式写清楚,求得解后须验根,原(根)留、增(根)舍别含糊。
最简根式的条件:最简根式三条件,号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。
特殊点坐标特征:坐标平面点(x,y),横在前来纵在后;(+,+),(-,+),(-,-)和(+,-),四个象限分前后;X轴上y为0,x为0在Y轴。
象限角的平分线:象限角的平分线,坐标特征有特点,一、三横纵都相等,二、四横纵确相反。
平行某轴的直线:平行某轴的直线,点的坐标有讲究,直线平行X轴,纵坐标相等横不同;直线平行于Y轴,点的横坐标仍照旧。
对称点坐标:对称点坐标要记牢,相反数位置莫混淆,X轴对称y相反,Y轴对称,x前面添负号;原点对称最好记,横纵坐标变符号。
自变量的取值范围:分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。
函数图像的移动规律:若把一次函数解析式写成y=k(x+0)+b、二次函数的解析式写成y=a(x+h)2+k的形式,则用下面后的口诀“左右平移在括号,上下平移在末稍,左正右负须牢记,上正下负错不了”。
一次函数图像与性质口诀:一次函数是直线,图像经过仨象限;正比例函数更简单,经过原点一直线;两个系数k与b,作用之大莫小看,k是斜率定夹角,b与Y轴来相见,k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反;k的绝对值越大,线离横轴就越远。
二次函数图像与性质口诀:二次函数抛物线,图象对称是关键;开口、顶点和交点,它们确定图象现;开口、大小由a断,c与Y轴来相见,b的符号较特别,符号与a相关联;顶点位置先找见,Y轴作为参考线,左同右异中为0,牢记心中莫混乱;顶点坐标最重要,一般式配方它就现,横标即为对称轴,纵标函数最值见。若求对称轴位置,符号反,一般、顶点、交点式,不同表达能互换。
反比例函数图像与性质口诀:反比例函数有特点,双曲线相背离的远;k为正,图在一、三(象)限,k为负,图在二、四(象)限;图在一、三函数减,两个分支分别减。图在二、四正相反,两个分支分别添;线越长越近轴,永远与轴不沾边。
巧记三角函数定义:初中所学的三角函数有正弦、余弦、正切、余切,它们实际是三角形边的比值,可以把两个字用/隔开,再用下面的一句话记定义:一位不高明的厨子教徒弟杀鱼,说了这么一句话:正对鱼磷(余邻)直刀切。正:正弦或正切,对:对边即正是对;余:余弦或余弦,邻:邻边即余是邻;切是直角边。
三角函数的增减性:正增余减
特殊三角函数值记忆:首先记住30度、45度、60度的正弦值、余弦值的分母都是2、正切、余切的分母都是3,分子记口诀“123,321,三九二十七”既可。
平行四边形的判定:要证平行四边形,两个条件才能行,一证对边都相等,或证对边都平行,一组对边也可以,必须相等且平行。对角线,是个宝,互相平分“跑不了”,对角相等也有用,“两组对角”才能成。
梯形问题的辅助线:移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现;延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前;已知腰上一中线,莫忘作出中位线。
添加辅助线歌:辅助线,怎么添?找出规律是关键,题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连,三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。
圆的证明歌:圆的证明不算难,常把半径直径连;有弦可作弦心距,它定垂直平分弦;直径是圆最大弦,直圆周角立上边,它若垂直平分弦,垂径、射影响耳边;还有与圆有关角,勿忘相互有关联,圆周、圆心、弦切角,细找关系把线连。同弧圆周角相等,证题用它最多见,圆中若有弦切角,夹弧找到就好办;圆有内接四边形,对角互补记心间,外角等于内对角,四边形定内接圆;直角相对或共弦,试试加个辅助圆;若是证题打转转,四点共圆可解难;要想证明圆切线,垂直半径过外端,直线与圆有共点,证垂直来半径连,直线与圆未给点,需证半径作垂线;四边形有内切圆,对边和等是条件;如果遇到圆与圆,弄清位置很关键,两圆相切作公切,两圆相交连公弦。
圆中比例线段:遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替,遇等比,改等积,引用射影和圆幂,平行线,转比例,两端各自找联系。
正多边形诀窍歌:份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前.
经过分点做切线,切线相交n个点.n个交点做顶点,外切正n边形便出现.正n边形很美观,它有内接,外切圆,内接、外切都唯一,两圆还是同心圆,它的图形轴对称,n条对称轴都过圆心点,如果n值为偶数,中心对称很方便.正n边形做计算,边心距、半径是关键,内切、外接圆半径,边心距、半径分别换,分成直角三角形2n个整,依此计算便简单.
函数学习口决:正比例函数是直线,图象一定过圆点,k的正负是关键,决定直线的象限,负k经过二四限,x增大y在减,上下平移k不变,由引得到一次线,向上加b向下减,图象经过三个限,两点决定一条线,选定系数是关键。
反比例函数双曲线,待定只需一个点,正k落在一三限,x增大y在减,图象上面任意点,矩形面积都不变,对称轴是角分线x、y的顺序可交换。
二次函数抛物线,选定需要三个点,a的正负开口判,c的大小y轴看,△的符号最简便,x轴上数交点,a、b同号轴左边抛物线平移a不变,顶点牵着图象转,三种形式可变换,配方法作用最关键。初中几何综合复习ABABCDE一、典型例题例1(2005重庆)如图,在△ABC中,点E在BC上,点D在AE上,已知∠ABD=∠ACD,∠BDE=∠CDE.求证:BD=CD。例2(2005南充)如图2-4-1,⊿ABC中,AB=AC,以AC为直径的⊙O与AB相交于点E,点F是BE的中点.(1)求证:DF是⊙O的切线.(2)若AE=14,BC=12,求BF的长.
例3.用剪刀将形状如图1所示的矩形纸片ABCD沿着直线CM剪成两部分,其中M为AD的中点.用这两部分纸片可以拼成一些新图形,例如图2中的Rt△BCE就是拼成的一个图形.EEBACBAMCDM图3图4图1图2(1)用这两部分纸片除了可以拼成图2中的Rt△BCE外,还可以拼成一些四边形.请你试一试,把拼好的四边形分别画在图3、图4的虚框内.(2)若利用这两部分纸片拼成的Rt△BCE是等腰直角三角形,设原矩形纸片中的边AB和BC的长分别为a厘米、b厘米,且a、b恰好是关于x的方程的两个实数根,试求出原矩形纸片的面积.二、强化训练练习一:填空题1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为.
2.已知∠a=60°,∠AOB=3∠a,OC是∠AOB的平分线,则∠AOC=___.3.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为
4.等腰Rt△ABC,斜边AB与斜边上的高的和是12厘米,则斜边AB=厘米.5.已知:如图△ABC中AB=AC,且EB=BD=DC=CF,∠A=40°,则∠EDF的度数为________.6.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面积为8cm,则△AOB的面积为.
7.如果圆的半径R增加10%,则圆的面积增加_________.8.梯形上底长为2,中位线长为5,则梯形的下底长为.
9.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是10,则△A′B′C′的面积是.
10.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°,那么AD等于.
练习二:选择题1.一个角的余角和它的补角互为补角,则这个角等于[]
A.30°B.45°C.60°D.75°2.将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到①、②两部分,将①展开后得到的平面图形是[]A.矩形B.三角形C.梯形D.菱形3.下列图形中,不是中心对称图形的是[]A.B.C.D.4.既是轴对称,又是中心对称的图形是[]
A.等腰三角形B.等腰梯形
C.平行四边形D.线段
5.依次连结等腰梯形的各边中点所得的四边形是[]
A.矩形B.正方形C.菱形D.梯形
6.如果两个圆的半径分别为4cm和5cm,圆心距为1cm,那么这两个圆的位置关系是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年公司劳动协议标准样本版B版
- 2024年度土地测绘制式合同合同版B版
- 2024年双方自愿离婚协议版A版
- 2024年度业务人员劳动协议版B版
- 2024合同变更声明协议范本
- 2024年度化工产品买卖协议模板文件版B版
- 2024年定制办公设备供应协议范本版
- 2024年厂房租赁安全规则标准协议模板版B版
- 2024年婚姻终止合同书无偿提供版
- 2024住宅墙体拆除作业合同示例一
- 2024年日照城投集团有限公司招聘笔试参考题库附带答案详解
- 光伏电站运维培训资料
- 1276小学网络安全教育PPT
- (2024年)保安员培训(44张)课件
- 促销员劳动合同范本(通用)
- 心肌炎讲课课件
- 辽宁省大连市2023-2024学年高二上学期期末考试数学试题(解析版)
- 心衰的药物治疗
- 2024年成都交通投资集团有限公司招聘笔试参考题库含答案解析
- 人美版全国小学美术优质课一等奖《绘画中的节日》课件
- 医院“无陪护”病房试点工作方案
评论
0/150
提交评论