




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市交通大附属中学2024届八年级数学第二学期期末统考试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.一家鞋店在一段时间内销售了某种运动鞋50双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的()尺码2222.52323.52424.525销售量/双46620455A.平均数 B.中位数 C.众数 D.方差2.如图,在矩形ABCD中,E是AB边的中点,沿EC对折矩形ABCD,使B点落在点P处,折痕为EC,连结AP并延长AP交CD于F点,连结CP并延长CP交AD于Q点.给出以下结论:①四边形AECF为平行四边形;②∠PBA=∠APQ;③△FPC为等腰三角形;④△APB≌△EPC;其中正确结论的个数为()A.1 B.2 C.3 D.43.如图,是一张平行四边形纸片ABCD,要求利用所学知识作出一个菱形,甲、乙两位同学的作法分别如下:甲:连接AC,作AC的中垂线交AD、BC于E、F,则四边形AFCE是菱形.乙:分别作∠A与∠B的平分线AE、BF,分别交BC于点E,交AD于点F,则四边形ABEF是菱形.对于甲、乙两人的作法,可判断()A.甲正确,乙错误 B.甲错误,乙正确C.甲、乙均正确 D.甲、乙均错误4.如图,数轴上点A表示的数是-1,原点O是线段AB的中点,∠BAC=30,∠ABC=90°,以点A为圆心,AC长为半径画弧,交数轴于点D,则点D表示的数是A. B. C. D.5.某校有15名同学参加区数学竞赛.已知有8名同学获奖,他们的竞赛得分均不相同.若知道某位同学的得分.要判断他能否获奖,在下列15名同学成绩的统计量中,只需知道()A.方差 B.平均数 C.众数 D.中位数6.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC7.以三角形三边中点和三角形三个顶点能画出平行四边形有()个.A.1 B.2 C.3 D.48.已知平行四边形的一边长为10,则对角线的长度可能取下列数组中的().A.4、8 B.10、32 C.8、10 D.11、139.关于x的一元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为()A.﹣5 B.﹣2 C.0 D.﹣810.下列是最简二次根式的是A. B. C. D.二、填空题(每小题3分,共24分)11.若分式在实数范围内有意义,则的取值范围是_____.12.方程x2=2x的解是__________.13.因式分解:.14.如图,在长20米、宽10米的长方形草地内修建了宽2米的道路,则草地的面积是______平方米.15.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.16.如图,将矩形ABCD沿直线BD折叠,使C点落在C′处,BC′交边AD于点E,若∠ADC′=40°,则∠ABD的度数是_____.17.化简:.18.如图,直线经过点,则关于的不等式的解集是______.三、解答题(共66分)19.(10分)为了增强环境保护意识,在环保局工作人员指导下,若干名“环保小卫士”组成了“控制噪声污染”课题学习研究小组.在“世界环境日”当天,该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如下:组别噪声声级分组频数频率144.5~59.540.1259.5~74.5a0.2374.5~89.5100.25489.5~104.5bc5104.5~119.560.15合计401.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=,b=,c=;(2)补充完整频数分布直方图;(3)如果全市共有300个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?20.(6分)如图,把矩形放入平面直角坐标系中,使分别落在轴的正半轴上,其中,对角线所在直线解析式为,将矩形沿着折叠,使点落在边上的处.(1)求点的坐标;(2)求的长度;(3)点是轴上一动点,是否存在点使得的周长最小,若存在,请求出点的坐标,如不存在,请说明理由.21.(6分)某学校计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为6000元,并且多买都有一定的优惠.各商场的优惠条件如下表所示:商场优惠条件甲商场第一台按原价收费,其余的每台优惠25%乙商场每台优惠20%(1)设学校购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出,与之间的关系式.(2)什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?(3)现在因为急需,计划从甲乙两商场一共买入10台电脑,已知甲商场的运费为每台50元,乙商场的运费为每台60元,设总运费为元,从甲商场购买台电脑,在甲商场的库存只有4台的情况下,怎样购买,总运费最少?最少运费是多少?22.(8分)如图,已知菱形ABCD边长为4,,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;在的前提下,求EF的最小值和此时的面积;当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则大小是否变化?请说明理由.23.(8分)(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数;(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.24.(8分)如图,在中,点是的中点,连接并延长,交的延长线于点F.求证:.25.(10分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)当AP为何值时,四边形PMEN是菱形?并给出证明。26.(10分)在正方形中,点是边上一个动点,连结,,点,分别为,的中点,连结交直线于点E.(1)如图1,当点与点重合时,的形状是_____________________;(1)当点在点M的左侧时,如图1.①依题意补全图1;②判断的形状,并加以证明.
参考答案一、选择题(每小题3分,共30分)1、C【解析】
根据平均数、中位数、众数、方差的意义分析判断即可,得出鞋店老板最关心的数据.【详解】解:∵众数体现数据的最集中的一点,这样可以确定进货的数量,
∴商家更应该关注鞋子尺码的众数.
故选C.【点睛】本题考查统计的有关知识,主要是众数的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、B【解析】分析:①根据三角形内角和为180°易证∠PAB+∠PBA=90°,易证四边形AECF是平行四边形,即可解题;②根据平角定义得:∠APQ+∠BPC=90°,由正方形可知每个内角都是直角,再由同角的余角相等,即可解题;③根据平行线和翻折的性质得:∠FPC=∠PCE=∠BCE,∠FPC≠∠FCP,且∠PFC是钝角,△FPC不一定为等腰三角形;④当BP=AD或△BPC是等边三角形时,△APB≌△FDA,即可解题.详解:①如图,EC,BP交于点G;∵点P是点B关于直线EC的对称点,∴EC垂直平分BP,∴EP=EB,∴∠EBP=∠EPB,∵点E为AB中点,∴AE=EB,∴AE=EP,∴∠PAB=∠PBA,∵∠PAB+∠PBA+∠APB=180°,即∠PAB+∠PBA+∠APE+∠BPE=2(∠PAB+∠PBA)=180°,∴∠PAB+∠PBA=90°,∴AP⊥BP,∴AF∥EC;∵AE∥CF,∴四边形AECF是平行四边形,故①正确;②∵∠APB=90°,∴∠APQ+∠BPC=90°,由折叠得:BC=PC,∴∠BPC=∠PBC,∵四边形ABCD是正方形,∴∠ABC=∠ABP+∠PBC=90°,∴∠ABP=∠APQ,故②正确;③∵AF∥EC,∴∠FPC=∠PCE=∠BCE,∵∠PFC是钝角,当△BPC是等边三角形,即∠BCE=30°时,才有∠FPC=∠FCP,如右图,△PCF不一定是等腰三角形,故③不正确;④∵AF=EC,AD=BC=PC,∠ADF=∠EPC=90°,∴Rt△EPC≌△FDA(HL),∵∠ADF=∠APB=90°,∠FAD=∠ABP,当BP=AD或△BPC是等边三角形时,△APB≌△FDA,∴△APB≌△EPC,故④不正确;其中正确结论有①②,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.3、C【解析】
由甲乙的做法,根据菱形的判定方法可知正误.【详解】解:甲的作法如图所示,∵四边形ABCD是平行四边形∴AD∥BC∴AE∥CF,∠EAO=∠FCO又∵EF垂直平分AC∴AO=CO,AE=CE又∵∠AOE=∠COF∴ΔAOE≅ΔCOF(ASA)∴AE=CF∴四边形AFCE为平行四边形又∵AE=CE∴四边形AFCE为菱形所以甲的作法正确.乙的作法如图所示∵AD∥BC∴∠FAE=∠BEA∵AE平分∠BAD∴∠FAE=∠BAE∴∠BEA=∠BAE∴BA=BE同理可得AB=AF∴AF=BE又∵AF∥BE∴四边形ABEF为平行四边形∵AB=AF∴四边形ABEF为菱形所以乙的作法正确故选:C【点睛】本题考查了菱形的判定,熟练运用菱形的判定进行证明是解题的关键.4、D【解析】
首先求得AB的长,然后在直角△ABC中利用三角函数即可求得AC的长,则AD=AC即可求得,然后求得OD即可.【详解】∵点A表示-1,O是AB的中点,∴OA=OB=1,∴AB=2,在Rt△ABC中,AC=,∴AD=AC=,∴OD=-1.故选:D.【点睛】本题考查了三角函数,在直角三角形中利用三角函数求得AC的长是关键.5、D【解析】
15人成绩的中位数是第8名的成绩.参赛选手要想知道自己是否能获奖,只需要了解自己的成绩以及全部成绩的中位数,比较即可。【详解】解:由于总共有15个人,且他们的分数互不相同,第8名的成绩是中位数,要判断是否得奖,故应知道自已的成绩和中位数.故选:D.【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.6、C【解析】
通过构造相似三角形即可解答.【详解】解:根据题意可得在△ABC中△ABC∽△MNC,又因为M.N是AC,BC的中点,所以相似比为2:1,MN//AB,B正确,CM=AC,D正确.即AB=2MN=36,A正确;MN=AB,C错误.故本题选C.【点睛】本题考查相似三角形的判定与运用,熟悉掌握是解题关键.7、C【解析】试题分析:如图所示,∵点E、F、G分别是△ABC的边AB、边BC、边CA的中点,∴AE=BE=GF=AB,AG=CG=EF=AC,BF=CF=EG=BC,GF∥AB,EG∥BC,EF∥AC,∴四边形AEFG、BEGF、CFEG都是平行四边形.故选C.考点:平行四边形的判定;三角形中位线定理.8、D【解析】
依题意画出图形,由四边形ABCD是平行四边形,得OA=AC,OB=BD,又由AB=10,利用三角形的三边关系,即可求得答案.【详解】解:∵四边形ABCD是平行四边形,∴OA=AC,OB=BD,∵AB=10,对选项A,∵AC=4,BD=8,∴OA=2,OB=4,∵OA+OB=6<10,∴不能组成三角形,故本选项错误;对选项B,∵AC=10,BD=32,∴OA=5,OB=16,∵OA+AB=15<16,∴不能组成三角形,故本选项错误;对选项C,∵AC=8,BD=10,∴OA=4,OB=5,∵OA+OB=9<10,∴不能组成三角形,故本选项错误;对选项D,∵AC=11,BD=13,∴OA=5.5,OB=6.5,∵OA+OB=12>10,∴能组成三角形,故本选项正确.故选:D.【点睛】此题考查了平行四边形的性质以及三角形的三边关系.注意掌握数形结合思想的应用.特别注意实际判断中使用:满足两个较小边的和大于最大边,则可以构成三角形.9、C【解析】
利用一元二次方程根的判别式(△=b2﹣4ac)可以判断方程的根的情况,有两个不相等的实根,即△>1.【详解】解:依题意,关于x的一元二次方程,有两个不相等的实数根,即△=b2﹣4ac=42+8c>1,得c>﹣2根据选项,只有C选项符合,故选:C.【点睛】本题考查一元二次方程的根的判别式,利用一元二次方程根的判别式(△=b2-4ac)可以判断方程的根的情况:一元二次方程的根与根的判别式有如下关系:①当△>1时,方程有两个不相等的实数根;②当△=1时,方程有两个相等的实数根;③当△<1
时,方程无实数根,但有2个共轭复根.上述结论反过来也成立.10、B【解析】
直接利用二次根式的性质分别化简即可得出答案.【详解】A、,故不是最简二次根式,故此选项错误;B、是最简二次根式,符合题意;C、,故不是最简二次根式,故此选项错误;D、,故不是最简二次根式,故此选项错误;故选:B.【点睛】此题主要考查了最简二次根式,正确化简二次根式是解题关键.二、填空题(每小题3分,共24分)11、x≠1【解析】【分析】根据分式有意义的条件进行求解即可得答案.【详解】由题意得:1-x≠0,解得:x≠1,故答案为x≠1.【点睛】本题考查了分式有意义的条件,熟知分母不为0时分式有意义是解题的关键.12、x1=0,x2=2【解析】
利用因式分解法解方程即可得到答案.【详解】解:原方程化为:所以:所以:或解得:故答案为:【点睛】本题考查的是一元二次方程的解法,熟练掌握一元二次方程的解法是关键.13、【解析】
解:=;故答案为14、144米1.【解析】
将道路分别向左、向上平移,得到草地为一个长方形,分别求出长方形的长和宽,再用长和宽相乘即可.【详解】解:将道路分别向左、向上平移,得到草地为一个长方形,长方形的长为10-1=18(米),宽为10-1=8(米),则草地面积为18×8=144米1.故答案为:144米1.【点睛】本题考查了平移在生活中的运用,将道路分别向左、向上平移,得到草地为一个长方形是解题的关键.15、m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:,解得:,即交点坐标为(,),∵交点在第一象限,∴,解得:m>1.考点:一次函数图象与几何变换.16、65°【解析】
直接利用翻折变换的性质得出∠2=∠3=25°,进而得出答案.【详解】解:由题意可得:∠A=∠C′=90°,∠AEB=∠C′ED,故∠1=∠ADC′=40°,则∠2+∠3=50°,∵将矩形ABCD沿直线BD折叠,使C点落在C′处,∴∠2=∠3=25°,∴∠ABD的度数是:∠1+∠2=65°,故答案为65°.【点睛】本题考查了矩形的性质、翻折变换的性质,正确得出∠2=∠3=25°是解题关键.17、2【解析】试题分析:相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.因此.18、【解析】
写出函数图象在x轴下方所对应的自变量的范围即可.【详解】解:观察图像可知:当x>2时,y<1.
所以关于x的不等式kx+3<1的解集是x>2.
故答案为:x>2.【点睛】本题考查了一次函数与一元一次不等式的关系.y=kx+b与kx+b>1、kx+b<1的关系是:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)1的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.整体是就是体现数形结合的思想.三、解答题(共66分)19、(1)a=8,b=12,c=0.3;(2)见解析;(3)90.【解析】
(1)在一个问题中频数与频率成正比.就可以比较简单的求出a、b、c的值;(2)另外频率分布直方图中长方形的高与频数即测量点数成正比,则易确定各段长方形的高;(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解.【详解】(1)根据频数与频率的正比例关系,可知,首先可求出a=8,再通过40−4−6−8−10=12,求出b=12,最后求出c=0.3;(2)如图:(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×300=90,∴在这一时噪声声级小于75dB的测量点约有90个.【点睛】此题考查频数(率)分布直方图,频数(率)分布表,用样本估计总体,解题关键在于看懂图中数据.20、(1);(2);(3),见解析.【解析】
(1)根据点C的坐标确定b的值,利用待定系数法求出点A坐标即可解决问题;(2)在Rt△BCD中,BC=6,BD=AB=10,CD==8,OD=10-8=2,设DE=AE=x,在Rt△DEO中,根据DE2=OD2+OE2,构建方程即可解决问题;(3)如图作点E关于y轴的对称点E′,连接BE′交y轴于P,此时△BPE的周长最小.利用待定系数法求出直线BE′的解析式即可解决问题;【详解】解:,四边形是矩形,,代入得到直线的解析式为令,得到.在中,,设在中,如图作点关于轴的对称点,连接交轴于,此时的周长最小.设直线的解析式为,则有,解得:直线的解析式为【点睛】本题考查一次函数综合题、矩形的性质、翻折变换、勾股定理等知识,解题的关键是熟练掌握待定系数法解决问题,学会利用轴对称解决最短问题,属于中考压轴题.21、(1)y1=4500x+1500;y2=4800x;(2)答案见解析;(3)从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元【解析】
(1)根据题意列出函数解析式即可;(2)①若甲商场购买更优惠,可得不等式4500x+1500<4800x,解此不等式,即可求得答案;②若乙商场购买更优惠,可得不等式4500x+1500>4800x,解此不等式,即可求得答案;③若两家商场收费相同,可得方程4500x+1500=4800x,解此方程,即可求得答案;(3)根据题意列出函数解析式,再根据增减性即可进行解答.【详解】解:(1)y1=6000+(1-25%)×6000(x-1)=4500x+1500;y2=(1-20%)×6000x=4800x;(2)设学校购买x台电脑,若到甲商场购买更优惠,则:4500x+1500<4800x,解得:x>5,即当购买电脑台数大于5时,甲商场购买更优惠;若到乙商场购买更优惠,则:4500x+1500>4800x,解得:x<5,即当购买电脑台数小于5时,乙商场购买更优惠;若两家商场收费相同,则:4500x+1500=4800x,解得:x=5,即当购买5台时,两家商场的收费相同;(3)w=50a+(10-a)60=600-10a,当a取最大时,费用最小,∵甲商场只有4台,∴a取4,W=600-40=560,即从甲商场买4台,从乙商场买6台时,总运费最少,最少运费是560元.【点睛】本题考查了一元一次不等式实际应用问题,涉及了不等式与方程的解法,解题的关键是理解题意,根据题意求得函数解析式,然后利用函数的性质求解.22、,证明见解析;的最小值是,;如图3,当点E运动到DC边上时,大小不发生变化,理由见解析.【解析】
先证明和是等边三角形,再证明≌,可得结论;由≌,易证得是正三角形,继而可得当动点E运动到当,即E为AD的中点时,BE的最小,根据等边三角形三线合一的性质可得BE和EF的长,并求此时的面积;同理得:≌,则可得,所以,则A、B、M、D四点共圆,可得.【详解】,证明:、F的速度相同,且同时运动,,又四边形ABCD是菱形,,,,是等边三角形,同理也是等边三角形,,在和中,,≌,;由得:≌,,,,是等边三角形,,如图2,当动点E运动到,即E为AD的中点时,BE的最小,此时EF最小,,,,的最小值是,中,,,,,;如图3,当点E运动到DC边上时,大小不发生变化,在和中,,≌,,,,,,,、B、M、D四点共圆,.【点睛】此题是四边形的综合题,考查了菱形的性质、等边三角形的判定与性质、四点共圆的判定和性质、垂线段最短以及全等三角形的判定与性质注意证得≌是解此题的关键.23、(1)①详见解析;②60°.(1)IH=FH;(3)EG1=AG1+CE1.【解析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.②先证明∠ABD=1∠ADB,推出∠ADB=30°,延长即可解决问题.(1)IH=FH.只要证明△IJF是等边三角形即可.(3)结论:EG1=AG1+CE1.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,在△DOE和△BOF中,,∴△DOE≌△BOF,∴EO=OF,∵OB=OD,∴四边形EBFD是平行四边形,∵EF⊥BD,OB=OD,∴EB=ED,∴四边形EBFD是菱形.②∵BE平分∠ABD,∴∠ABE=∠EBD,∵EB=ED,∴∠EBD=∠EDB,∴∠ABD=1∠ADB,∵∠ABD+∠ADB=90°,∴∠ADB=30°,∠ABD=60°,∴∠ABE=∠EBO=∠OBF=30°,∴∠EBF=60°.(1)结论:IH=FH.理由:如图1中,延长BE到M,使得EM=EJ,连接MJ.∵四边形EBFD是菱形,∠B=60°,∴EB=BF=ED,DE∥BF,∴∠JDH=∠FGH,在△DHJ和△GHF中,,∴△DHJ≌△GHF,∴DJ=FG,JH=HF,∴EJ=BG=EM=BI,∴BE=IM=BF,∵∠MEJ=∠B=60°,∴△MEJ是等边三角形,∴MJ=EM=NI,∠M=∠B=60°在△BIF和△MJI中,,∴△BIF≌△MJI,∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,∴IH⊥JF,∵∠BFI+∠BIF=110°,∴∠MIJ+∠BIF=110°,∴∠JIF=60°,∴△JIF是等边三角形,在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,∴∠FIH=30°,∴IH=FH.(3)结论:EG1=AG1+CE1.理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,∵∠FAD+∠DEF=90°,∴AFED四点共圆,∴∠EDF=∠DAE=45°,∠ADC=90°,∴∠ADF+∠EDC=45°,∵∠ADF=∠CDM,∴∠CDM+∠CDE=45°=∠EDG,在△DEM和△DEG中,,∴△DEG≌△DEM,∴GE=EM,∵∠DCM=∠DAG=∠ACD=45°,AG=CM,∴∠ECM=90°∴EC1+CM1=EM1,∵EG=EM,AG=CM,∴GE1=AG1+CE1.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供货分销合同样本样本
- 冰淇淋套餐转让合同样本
- 当月生产计划的有效制定
- ups设备销售合同标准文本
- 2025简易借款合同范本
- 农村供水委托运营合同样本
- 农户养殖种植合同范例
- 关于员工劳动合同范例
- 出口家具订购合同样本
- 2025铁路运输合同简易协议书
- 施耐德电气EcoStruxure:智能电网技术教程.Tex.header
- 5维11步引导式学习地图-人才研修院
- 配电线路工(中级)技能鉴定理论考试题库(浓缩400题)
- 2024年重庆市中考英语试卷真题B卷(含标准答案及解析)+听力音频
- (正式版)QB∕T 2761-2024 室内空气净化产品净化效果测定方法
- DL-T-5161.4-2018电气装置安装工程质量检验及评定规程第4部分:母线装置施工质量检验
- CJJ 232-2016 建筑同层排水工程技术规程
- 三菱PLC应用技术培训(讲稿)第一部分
- 医院感染管理与公共卫生培训
- 中国大学mooc《高级财务会计(暨南大学) 》章节测试答案
- 第7课 全球航路的开辟和欧洲早期殖民扩张(教学课件)-【中职专用】《世界历史》(高教版2023•基础模块)
评论
0/150
提交评论