版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省白山市数学八年级下册期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.一个多边形的每一个外角都等于它相邻的内角的一半,则这个多边形的边数是()A.3 B.4 C.5 D.62.比较A组、B组中两组数据的平均数及方差,一下说法正确的是()A.A组,B组平均数及方差分别相等 B.A组,B组平均数相等,B组方差大C.A组比B组的平均数、方差都大 D.A组,B组平均数相等,A组方差大3.如图,正方形ABCD的对角线相交于O点,BE平分∠ABO交AO于E点,CF⊥BE于F点,交BO于G点,连接EG、OF,下列四个结论:①CE=CB;②AE=OE;③OF=CG,其中正确的结论只有()A.①②③ B.②③ C.①③ D.①②4.15名同学参加八年级数学竞赛初赛,他们的得分互不相同,按从高分到低分的原则,录取前8名同学参加复赛,现在小聪同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数 B.中位数 C.众数 D.方差5.分解因式x2-4的结果是A. B.C. D.6.若一个正方形的面积为(ɑ+1)(ɑ+2)+,则该正方形的边长为()A. B. C. D.7.反比例函数图象上有,两点,则与的大小关系是()A. B. C. D.不确定8.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长()A.2 B.3 C.4 D.2.59.下面二次根式中,是最简二次根式的是()A. B. C. D.10.如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于()A.20 B.10 C.4 D.211.已知△ABC的三边之长分别为a、1、3,则化简|9-2a|-的结果是()A.12-4a B.4a-12 C.12 D.-1212.在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是()A.①② B.①②③ C.①②④ D.①②③④二、填空题(每题4分,共24分)13.如图,在菱形ABCD中,∠ABC=120°,E是AB边的中点,P是AC边上一动点,PB+PE的最小值是,则AB的长为______.14.将两块相同的含有30°角的三角尺按如图所示的方式摆放在一起,则四边形ABCD为平行四边形,请你写出判断的依据_____.15.如图,在的两边上分别截取、,使;分别以点、为圆心,长为半径作弧,两弧交于点,连接、.若,四边形的面积为.则的长为______.16.如图,在△ABC中,∠ABC=90°,∠ACB=30°,D是BC上的一点,且知AC=20,CD=10﹣6,则AD=_____.17.9的算术平方根是.18.在△ABC中,AB=8,BC=2,AC=6,D是AB的中点,则CD=_____.三、解答题(共78分)19.(8分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.(1)求证:△ADF≌△DCE;(2)求GH的长.20.(8分)如图,在□ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:≌.(2)若DEB=90,求证四边形DEBF是矩形.21.(8分)阅读材料,解答问题:(1)中国古代数学著作《周髀算经》有着这样的记载:“勾广三,股修四,经隅五.”这句话的意思是:“如果直角三角形两直角边为3和4时,那么斜边的长为1.”上述记载说明:在中,如果,,,,那么三者之间的数量关系是:.(2)对于(1)中这个数量关系,我们给出下面的证明.如图①,它是由四个全等的直角三角形围成的一个大正方形,中空的部分是一个小正方形.结合图①,将下面的证明过程补充完整:∵,(用含的式子表示)又∵.∴∴∴.(3)如图②,把矩形折叠,使点与点重合,点落在点处,折痕为.如果,求的长.22.(10分)某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.为了多销售,增加利润,超市准备适当降价。据测算,若每箱降价2元,每天可多售出4箱.(1)如果要使每天销售饮料获利14000元,则每箱应降价多少元?(2)每天销售饮料获利能达到15000元吗?若能,则每箱应降价多少元?若不能,请说明理由.23.(10分)某文化用品商店用1000元购进一批“晨光”套尺,很快销售一空;商店又用1500元购进第二批该款套尺,购进时单价是第一批的倍,所购数量比第一批多100套.(1)求第一批套尺购进时单价是多少?(2)若商店以每套4元的价格将这两批套尺全部售出,可以盈利多少元?24.(10分)(1)计算:(2)若,,求的值25.(12分)已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.26.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,1.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.
参考答案一、选择题(每题4分,共48分)1、D【解析】
先根据多边形的内角和外角的关系,求出一个外角.再根据外角和是固定的310°,从而可代入公式求解.【详解】解:设多边形的一个内角为2x度,则一个外角为x度,依题意得
2x+x=180°,
解得x=10°.
310°÷10°=1.
故这个多边形的边数为1.
故选D.【点睛】本题考查了多边形的内角与外角关系、方程的思想,记住多边形的一个内角与外角互补、及外角和的特征是关键.2、D【解析】
由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0,则分别计算出平均数及方差即可.【详解】解:由图象可看出A组的数据为:3,3,3,3,3,-1,-1,-1,-1,B组的数据为:2,2,2,2,3,0,0,0,0则A组的平均数为:,B组的平均数为:,A组的方差为:,B组的方差为:,∴,综上,A组、B组的平均数相等,A组的方差大于B组的方差故选D.【点睛】本题考查了平均数,方差的求法.平均数表示一组数据的平均程度;方差是用来衡量一组数据波动大小的量.3、A【解析】
根据正方形对角性质可得∠CEB=∠CBE,CE=CB;根据等腰直角三角形性质,证△ECG≌△BCG,可得AE=EG=OE;根据直角三角形性质得OF=BE=CG.【详解】∵四边形ABCD是正方形,
∴∠ABO=∠ACO=∠CBO=45°,AB=BC,OA=OB=OC,BD⊥AC,
∵BE平分∠ABO,
∴∠OBE=∠ABO=22.5°,
∴∠CBE=∠CBO+∠EBO=67.5°,
在△BCE中,∠CEB=180°-∠BCO-∠CBE=180°-45°-67.5°=67.5°,
∴∠CEB=∠CBE,
∴CE=CB;
故①正确;∵OA=OB,AE=BG,
∴OE=OG,
∵∠AOB=90°,
∴△OEG是等腰直角三角形,
∴EG=OE,
∵∠ECG=∠BCG,EC=BC,CG=CG,
∴△ECG≌△BCG,
∴BG=EG,
∴AE=EG=OE;
故②正确;
∵∠AOB=90°,EF=BF,
∵BE=CG,
∴OF=BE=CG.
故③正确.
故正确的结论有①②③.
故选A.【点睛】运用了正方形的性质、等腰三角形的性质、等腰梯形的判定、全等三角形的判定与性质以及等腰直角三角形的性质.此题难度较大,解题的关键是注意数形结合思想的应用.4、B【解析】
由中位数的概念,即最中间一个或两个数据的平均数;可知15人成绩的中位数是第8名的成绩.根据题意可得:参赛选手要想知道自己是否能进入前8名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】解:由于15个人中,第8名的成绩是中位数,故小明同学知道了自己的分数后,想知道自己能否进入决赛,还需知道这十五位同学的分数的中位数.
故选B.【点睛】本题考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5、C【解析】
本题考查用公式法进行因式分解.根据该题特点:两项分别是x和2的平方,并且其符合相反,可以用平方差公式进行分解.【详解】x2-4=(x-2)(x+2).故选C.【点睛】本题考查用公式法进行因式分解,解题的关键是能熟记用公式法进行因式分解的式子的特点.6、B【解析】
把所给代数式重新整理后用完全平方公式分解因式即可.【详解】(ɑ+1)(ɑ+2)+==,∴正方形的边长为:.故选B.【点睛】本题考查了完全平方公式进行因式分解,熟练掌握a2±2ab+b2=(a±b)2是解答本题的关键.两项平方项的符号需相同;有一项是两底数积的2倍,是易错点.7、B【解析】
根据反比例函数解析式,判断出反比例函数的增减性,根据增减性判断与的大小即可.【详解】由反比例函数的k的值为负数,∴各象限内,y随x的增大而增大,∵−2>−3,∴>,故选B【点睛】此题考查反比例函数图象上点的坐标特征,解题关键在于判断出反比例函数的增减性8、A【解析】
根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.【详解】解:∵四边形ABCD是平行四边形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故选A.【点睛】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.9、C【解析】
根据最简二次根式的概念进行判断即可.【详解】A、不是最简二次根式,错误;B、不是最简二次根式,错误;C、是最简二次根式,正确;D、不是最简二次根式,错误;故选C.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.10、C【解析】
根据矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,利用三角形中位线定理求证EF=GH=FG=EH,然后利用四条边都相等的平行四边形是菱形.根据菱形的性质来计算四边形EFGH的周长即可.【详解】如图,连接BD,AC.在矩形ABCD中,AB=4,AD=6,∠DAB=90°,则由勾股定理易求得BD=AC=2.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴EF为△ABC的中位线,∴EF=AC=,EF∥AC,又GH为△BCD的中位线,∴GH=AC=,GH∥AC,∴HG=EF,HG∥EF,∴四边形EFGH是平行四边形.同理可得:FG=BD=,EH=AC=,∴EF=GH=FG=EH=,∴四边形EFGH是菱形.∴四边形EFGH的周长是:4EF=4,故选C.【点睛】此题考查中点四边形,掌握三角形中位线定理是解题关键11、A【解析】
二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.【详解】解:由题意得2<a<4,∴9-2a>0,3-2a<0=9-2a-(2a-3)=9-2a-2a+3=12-4a,故选:A.【点睛】本题考查了二次根式化简,熟练掌握化简二次根式是解题的关键.12、C【解析】
如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(每题4分,共24分)13、1【解析】分析:找出B点关于AC的对称点D,连接DE,则DE就是PE+PB的最小值,进而可求出AB的值.详解:连接DE交AC于P,连接BD,BP,由菱形的对角线互相垂直平分,可得B、D关于AC对称,则PD=PB,∴PE+PB=PE+PD=DE,即DE就是PE+PB的最小值,∵∠BAD=60°,AD=AB,∴△ABD是等边三角形,∵AE=BE,∴DE⊥AB(等腰三角形三线合一的性质)在Rt△ADE中,DE=,∴AD1=4,∴AD=AB=1.点睛:本题主要考查轴对称-最短路线问题和菱形的性质的知识点,解答本题的关键,此题是道比较不错的习题.14、两组对边分別平行的四边形是平行四边形【解析】
根据平行四边形的判定方法即可求解.【详解】解:∵两块相同的含有30°角的三角尺∴AD=BC,AB=CD,∠ADB=∠DBC=90°,∠ABD=∠BDC=30°∴AB∥CD,AD∥BC∴四边形ABCD是平行四边形依据为:两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)故答案为两组对边分別平行的四边形是平行四边形;两组对边分別相等的四边形是平行四边形一组对边平行且相等的四边形是平行四边形(写出一种即可)【点睛】此题主要考查平行四边形的的判定,解题的关键是熟知平行四边形的判定定理.15、1【解析】
根据作法判定出四边形OACB是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】解:根据作图,AC=BC=OA,
∵OA=OB,
∴OA=OB=BC=AC,
∴四边形OACB是菱形,
∵AB=2cm,四边形OACB的面积为1cm2,
∴AB•OC=×2×OC=1,
解得OC=1cm.
故答案为:1.【点睛】本题考查了菱形的判定与性质,菱形的面积等于对角线乘积的一半的性质,判定出四边形OACB是菱形是解题的关键.16、1【解析】
根据直角三角形的性质求出AB,根据勾股定理求出BC,计算求出BD,根据勾股定理计算即可.【详解】解:∵∠ABC=90°,∠ACB=30°,∴AB=AC=10,由勾股定理得,BC=,∴BD=BC﹣CD=6,∴AD=,故答案为:.【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.17、1.【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.【详解】∵,∴9算术平方根为1.故答案为1.【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.18、4【解析】
先运用勾股定理逆定理得出△ABC是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可得出CD的长.【详解】解:在△ABC中,AB=8,BC=2,AC=6,
82=64=(2)2+62,
所以AB2=BC2+AC2,
所以△ABC是直角三角形,
∵D是AB的中点,
∴CD=AB=4,
故答案为:4【点睛】本题考查勾股定理逆定理,解题关键根据勾股定理逆定理及直角三角形斜边上的中线等于斜边的一半的性质解答.三、解答题(共78分)19、(1)详见解析;(2)【解析】
(1)根据正方形的性质可得AD=DC,∠ADC=∠C=90°,然后即可利用SAS证得结论;(2)根据全等三角形的性质和余角的性质可得∠DGF=90°,根据勾股定理易求得AE的长,然后根据直角三角形斜边中线的性质即得结果.【详解】(1)证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°,∵DF=CE,∴△ADF≌△DCE(SAS);(2)解:∵△ADF≌△DCE,∴∠DAF=∠CDE,∵∠DAF+∠DFA=90°,∴∠CDE+∠DFA=90°,∴∠DGF=90°,∴∠AGE=90°,∵AB=BC=6,EC=2,∴BE=4,∵∠B=90°,∴AE==,∵点H为AE的中点,∴GH=.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理和直角三角形的性质等知识,属于常见题型,熟练掌握上述基本知识是解题的关键.20、(1)利用SAS证明;(2)证明见解析.【解析】试题分析:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.(1)由在□ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.试题解析:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.故答案为(1)利用SAS证明;(2)证明见解析.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.21、(1);(2);正方形ABCD的面积;四个全等直角三角形的面积正方形CFGH的面积;;(2)2.【解析】
(1)根据勾股定理解答即可;(2)根据题意、结合图形,根据完全平方公式进行计算即可;(2)根据翻折变换的特点、根据勾股定理列出方程,解方程即可.【详解】解:(1)在中,,,,,
由勾股定理得,,
故答案为:;(2),
又正方形的面积四个全等直角三角形的面积的面积正方形CFGH的面积,
.
.
,
故答案为:;正方形的面积;四个全等直角三角形的面积的面积正方形CFGH的面积;;(2)设,则,
由折叠的性质可知,,
在中,,
则,
解得,,
则PN的长为2.【点睛】本题考查的是正方形和矩形的性质、勾股定理、翻折变换的性质,正确理解勾股定理、灵活运用数形结合思想是解题的关键.22、(1)每箱应降价50元,可使每天销售饮料获利14000元.(2)获利不能达到15000元.【解析】
(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列方程解答即可;
(2)根据题意列出方程,然后用根的判别式去验证.【详解】(1)要使每天销售饮料获利14000元,每箱应降价x元,依据题意列方程得,(120−x)(100+2x)=14000,整理得x2−70x+1000=0,解得x1=20,x2=50;∵为了多销售,增加利润,∴x=50答:每箱应降价50元,可使每天销售饮料获利14000元.
(2)由题意得:(120−x)(100+2x)=1500,整理得x2−70x+1500=0,∵△=702−4×1500<0∴方程无解,∴获利不能达到15000元.【点睛】考核知识点:一元二次方程的应用.理解题意,列出方程是关键.23、(1)1(1)【解析】
(1)设第一批套尺购进时单价是x元/套
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预防儿童出生缺陷育儿知识科普讲座
- 团队凝聚力培训
- 瑜伽消防知识培训课件
- 二零二五年度农村土地流转交易服务平台建设合同2篇
- 行政年终述职汇报
- 陕西省延安市延长县2024-2025学年七年级上学期1月英语期末考试试卷(无答案)
- 高端服装分拣包装产业化项目可行性研究报告模板-立项拿地
- 2025年度社交网络APP用户增长与活跃度提升合同3篇
- 湖南省张家界市桑植县2024-2025学年七年级上学期地理期末试卷(含答案)
- 河北省承德市(2024年-2025年小学六年级语文)统编版阶段练习((上下)学期)试卷及答案
- 2024年省宿州市“宿事速办”12345政务服务便民热线服务中心招考15名工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 2024年安徽省行政执法人员资格认证考试试题含答案
- 中国2型糖尿病运动治疗指南 (2024版)
- 人教版初中九年级全册英语单词表
- 人教版小学二年级数学下册数学口算、脱式、竖式、应用题
- DZ∕T 0405-2022 无人机航空磁测数据采集技术要求(正式版)
- 会计业务培训方案(2篇)
- 楚天华通医药设备有限公司纯化水设备介绍A32017年3月1日
- 投资合作备忘录标准格式
- 职场吐槽大会活动方案
- 《生物质热电联产工程设计规范》
评论
0/150
提交评论