版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省杭州市育才中学2024年数学八年级下册期末统考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列二次根式中属于最简二次根式的是()A. B. C. D.2.如图顺次连接等腰梯形四边中点得到一个四边形,再顺次连接所得四边形四边的中点得到的图形是()A.等腰梯形 B.直角梯形 C.菱形 D.矩形3.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(
)A.﹣1 B.0 C.1 D.34.设直线y=kx+6和直线y=(k+1)x+6(k是正整数)及x轴围成的三角形面积为Sk(k=1,2,3,…,8),则S1+S2+S3+…+S8的值是()A. B. C.16 D.145.剪纸是某市特有的民间艺术,在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是()A. B. C. D.6.如图,在菱形中,对角线交于点,,则菱形的面积是()A.18 B. C.36 D.7.一次函数与,在同一平面直角坐标系中的图象是()A. B. C. D.8.下列各组线段a、b、c中,能组成直角三角形的是()A.a=4,b=5,c=6 B.a=1,b=,c=2C.a=1,b=1,c=3 D.a=5,b=12,c=129.为了调查某校同学的体质健康状况,随机抽查了若干名同学的每天锻炼时间如表:每天锻炼时间(分钟)20406090学生数2341则关于这些同学的每天锻炼时间,下列说法错误的是()A.众数是60 B.平均数是21 C.抽查了10个同学 D.中位数是5010.用三块正多边形的木板铺地,拼在一起并相交于一点的各边完全吻合,其中两块木板的边数都是8,则第三块木板的边数应是()A.4B.5C.6D.8二、填空题(每小题3分,共24分)11.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠且高度恰好相同.此时测得墙上影子高CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知小明身高EF是1.6m,则楼高AB为______m.12.如图,在平面直角坐标系中,△ABC与△A′B'C′关于点P位似且顶点都在格点上,则位似中心P的坐标是______.13.若等腰三角形的两条边长分别为8cm和16cm,则它的周长为_____cm.14.在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是________.15.方程的解是__________.16.若点、在双曲线上,则和的大小关系为______.17.如图,在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,连接AO、DO.若AO=3,则DO的长为_____.18.如图,在Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于D,若CD=BD,点D到边AB的距离为6,则BC的长是____.三、解答题(共66分)19.(10分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,3,;(2)平行四边形有一锐角为45°,且面积为1.20.(6分)如图,平行四边形中,点是与的交点,过点的直线与,的延长线分别交于点,.(1)求证:;(2)连接,,求证:四边形是平行四边形.21.(6分)如图,是平行四边形的对角线,分别为边和边延长线上的点,连接交于点,且.(1)求证:;(2)若是等腰直角三角形,,是的中点,,连接,求的长.22.(8分)已知一次函数的图像经过点M(-1,3)、N(1,5)。直线MN与坐标轴相交于点A、B两点.(1)求一次函数的解析式.(2)如图,点C与点B关于x轴对称,点D在线段OA上,连结BD,把线段BD顺时针方向旋转90°得到线段DE,作直线CE交x轴于点F,求的值.(3)如图,点P是直线AB上一动点,以OP为边作正方形OPNM,连接ON、PM交于点Q,连BQ,当点P在直线AB上运动时,的值是否会发生变化,若不变,请求出其值;若变化,请说明理由.23.(8分)某中学数学兴趣小组为了解本校学生对电视节目的喜爱情况,随机调查了部分学生最喜爱哪一类节目(被调查的学生只选一类并且没有不选择的),并将调查结果制成了如下的两个统计图(不完整).请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为__________,娱乐节目在扇形统计图中所占圆心角的度数是__________度.(2)请将条形统计图补充完整:(3)若该中学有2000名学生,请估计该校喜爱动画节目的人数.24.(8分)如图,四边形ABCD是菱形,对角线AC与BD相交于O,AB=5,AO=4,求BD的长.25.(10分)张明、王成两位同学在初二学年10次数学单元检测的成绩(成绩均为整数,且个位数为0)如图所示利用图中提供的信息,解答下列问题:(1)完成下表:姓名平均成绩中位数众数方差(s2)张明8080王成260(2)如果将90分以上(含90分)的成绩视为优秀,则优秀率较高的同学是;(3)根据图表信息,请你对这两位同学各提出学习建议.26.(10分)如图,已知正方形ABCD的边长为6,点E、F分别在BC、DC上,CE=DF=2,DE与AF相交于点G,点H为AE的中点,连接GH.(1)求证:△ADF≌△DCE;(2)求GH的长.
参考答案一、选择题(每小题3分,共30分)1、D【解析】解:A.=,不是最简二次根式,故A错误;B.=6,不是最简二次根式,故B错误;C.,根号内含有分母,不是最简二次根式,故C错误;D.是最简二次根式,故D正确.故选D.2、D【解析】
首先作出图形,根据三角形的中位线定理,可以得到,,,再根据等腰梯形的对角线相等,即可证得四边形EFGH的四边相等,即可证得是菱形,然后根据三角形中位线定理即可证得四边形OPMN的一组对边平行且相等,则是平行四边形,在根据菱形的对角线互相垂直,即可证得平行四边形的一组临边互相垂直,即可证得四边形OPMN是矩形.【详解】解:连接AC,BD.∵E,F是AB,AD的中点,即EF是的中位线.,同理:,,.又等腰梯形ABCD中,..四边形EFGH是菱形.是的中位线,∴EFEG,,同理,NMEG,∴EFNM,四边形OPMN是平行四边形.,,又菱形EFGH中,,平行四边形OPMN是矩形.故选:D.【点睛】本题考查了等腰梯形的性质,菱形的判定,矩形的判定,以及三角形的中位线定理,关键的应用三角形的中位线定理得到四边形EFGH和四边形OPMN的边的关系.3、D【解析】分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆=b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.详解:由题意得,(-4)2-4(c+1)=0,c=3.故选D.点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.4、C【解析】
联立两直线解析式成方程组,通过解方程组可求出两直线的交点,利用一次函数图象上点的坐标特征可得出两直线与x轴的交点坐标,利用三角形的面积公式可得出Sk=×6×6(-),将其代入S1+S2+S3+…+S8中即可求出结论.【详解】解:联立两直线解析式成方程组,得:,解得:,∴两直线的交点(0,6),∵直线y=kx+6与x轴的交点为(,0),直线y=(k+1)x+6与x轴的交点为(,0),∴Sk=×6×|﹣()|=18(-),∴S1+S2+S3+…+S8=18×(1-+-+-+…+-)=18×(1-),=18×=1.故选C.【点睛】本题考查了一次函数函数图象上点的坐标特征、三角形的面积以及规律型中数字的变化类,利用一次函数图象上点的坐标特征及三角形的面积公式找出Sk=×6×6(-)是解题的关键.5、C【解析】A.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,不是中心对称图形,故此选项错误;B.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,不是中心对称图形,故此选项错误.C.此图形沿一条直线对折后能够完全重合,∴此图形是轴对称图形,旋转180∘能与原图形重合,是中心对称图形,故此选项正确;D.此图形沿一条直线对折后不能够完全重合,∴此图形不是轴对称图形,是中心对称图形,故此选项错误.故选C.6、B【解析】
先求出菱形对角线的长度,再根据菱形的面积计算公式求解即可.【详解】∵四边形ABCD是菱形,∴BD=2BO,AC=2AO,∵AO=3,BO=3,∴BD=6,AC=6,∴菱形ABCD的面积=×AC×BD=×6×6=18.故选B.【点睛】此题主要考查菱形的对角线的性质和菱形的面积计算.7、C【解析】
根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【详解】当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选C.【点睛】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8、B【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+2=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.9、B【解析】
根据众数、中位数和平均数的定义分别对每一项进行分析即可.【详解】解:A、60出现了4次,出现的次数最多,则众数是60,故A选项说法正确;B、这组数据的平均数是:(20×2+40×3+60×4+90×1)÷10=49,故B选项说法错误;C、调查的户数是2+3+4+1=10,故C选项说法正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(40+60)÷2=50,则中位数是50,故D选项说法正确;故选:B.【点睛】此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.10、A【解析】正八边形的每个内角为:180°-360°÷8=135°,两个正八边形在一个顶点处的内角和为:2×135°=270°,那么另一个多边形的内角度数为:360°-270°=90°,∵正方形的每个内角为90°,∴另一个是正方形.∴第三块木板的边数是4.故选A.二、填空题(每小题3分,共24分)11、21.2【解析】
过点D作DN⊥AB,可得四边形CDME、ACDN是矩形,即可证明△DFM∽△DBN,从而得出BN,进而求得AB的长.【详解】解:过点D作DN⊥AB,垂足为N.交EF于M点,∴四边形CDME、ACDN是矩形,∴AN=ME=CD=1.2m,DN=AC=30m,DM=CE=0.6m,∴MF=EF-ME=1.6-1.2=0.4m,依题意知EF∥AB,∴△DFM∽△DBN,DMDN=即:0.630=0.4∴AB=BN+AN=20+1.2=21.2,答:楼高为AB为21.2米.【点睛】本题考查了平行投影和相似三角形的应用,是中考常见题型,要熟练掌握.12、(4,5)【解析】
直接利用位似图形的性质得出对应点位置进而得出答案.【详解】解:如图所示:连接AA′,BB′,两者相交于点P,∴位似中心P的坐标是(4,5).故答案为:(4,5).【点睛】本题主要考查了位似变换,正确掌握位似图形的性质是解题关键.13、1;【解析】
根据已知条件和三角形三边关系可知;等腰三角形的腰长不可能为3cm,只能为8cm,依此即可求得等腰三角形的周长.【详解】解:∵等腰三角形的两条边长分别为3cm,8cm,
∴由三角形三边关系可知;等腰三角形的腰长不可能为8cm,只能为16cm,
∴等腰三角形的周长=16+16+8=1cm.
故答案为1.【点睛】本题考查了三角形三边关系及等腰三角形的性质,关键是要分两种情况解答.14、-1≤a≤【解析】
根据题意得出C点的坐标(a-1,a-1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【详解】解:反比例函数经过点A和点C.当反比例函数经过点A时,即=3,解得:a=±(负根舍去);当反比例函数经过点C时,即=3,解得:a=1±(负根舍去),则-1≤a≤.故答案为:-1≤a≤.【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=(k为常数,k≠0)的图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.15、【解析】
先移项,然后开平方,再开立方即可得出答案.【详解】,,故答案为:.【点睛】本题主要考查解方程,掌握开平方和开立方的法则是解题的关键.16、【解析】
根据反比例函数的增减性解答即可.【详解】将A(7,y1),B(5,y2)分别代入双曲线上,得y1=;y2=,则y1与y2的大小关系是.故答案为.【点睛】此题考查反比例函数的性质,解题关键在于掌握其性质.17、3【解析】
根据直角三角形斜边的中线等于斜边的一半求解即可.【详解】∵在Rt△BAC和Rt△BDC中,∠BAC=∠BDC=90°,O是BC的中点,∴,,∴DO=AO=3.故答案为3.【点睛】本题考查了直角三角形的性质,熟练掌握直角三角形斜边的中线等于斜边的一半是解答本题的关键.18、2【解析】
过D作DE⊥AB于E,则DE=1,根据角平分线性质求出CD=DE=1,求出BD即可.【详解】过D作DE⊥AB于E.∵点D到边AB的距离为1,∴DE=1.∵∠C=90°,AD平分∠BAC,DE⊥AB,∴CD=DE=1.∵CDDB,∴DB=12,∴BC=1+12=2.故答案为2.【点睛】本题考查了角平分线性质的应用,注意:角平分线上的点到这个角的两边的距离相等.三、解答题(共66分)19、(1)见解析;(2)见解析.【解析】分析:(1)4在网格线上,3是直角边为3的直角三角形的斜边,是直角边分别为1和3的直角三角形的斜边;(2)先构造一个直角边为2的等腰直角三角形,以此为基础再构造平行四边形.详解:(1)图(1)即为所求;(2)图(2)即为所求.点睛:本题考查了勾股定理,在格点中,可结合网格中的直角构造直角三角形,一般有理数可用网格线表示,无理数可表示为直角三角形的斜边,勾股定理确定它的两条直角边.20、(1)证明见解析;(2)证明见解析.【解析】
(1)根据平行四边形的性质和全等三角形的证明方法证明即可;(2)请连接、,由,得到,又,所以四边形是平行四边形.【详解】(1)四边形是平行四边形,,..在与中,,;(2)如图,连接、,由(1)可知,,,四边形是平行四边形.【点睛】本题主要考查了全等三角形的性质与判定、平行四边形的性质,首先利用平行四边形的性质构造全等条件,然后利用全等三角形的性质解决问题.21、(1)见解析;(2)【解析】
(1)只要证明四边形ACHF是平行四边形,四边形ACGE是平行四边形,可得AC=HF=EG,即可推出EF=GH.
(2)首先证明∠BCF=90°,在Rt△BCF中,利用勾股定理即可解决问题;【详解】(1)证明:四边形是平行四边形,.四边形是平行四边形,四边形是平行四边形.∴∴(2)解:连接,如解图.,是的中点,.,.,.【点睛】本题考查平行四边形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(4)y=x+4.(4);(4)不变,.【解析】试题分析:(4)用待定系数法,将M,N两点坐标代入解析式求出k,b即得一次函数解析式;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴于P,易证△BDO≌△DEP,∴OD=PE,DP=BO=4,设D(,0),则E(,),设直线CE解析式是:y=kx+b,把C,E两点坐标代入得:,∴,∴CE解析式是y=x-4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===;(4)此题连接BM,因为AO=BO,MO=PO,且∠BOM=∠AOP,得出△BOM≌△AOP(SAS),∵∠PAO=445º,∴∠MBP=∠PAO=445º,∴∠MBP=90°,在Rt△MBP中,MQ=PQ,∴BQ是此直角三角形斜边中线,等于斜边一半,BQ=MP,MP又是正方形对角线,∴MP=OP,∴BQ:OP=MP:OP=×OP:OP=,∴的值不变,是.试题解析:(4)用待定系数法,将M,N两点坐标代入解析式得:,解得b=4,k=4,∴一次函数的解析式是y=x+4;(4)∵点C与点B关于x轴对称,B(0,4),∴C(0,-4),再由旋转性质可得DB=DE,∠BDE=90º,过点E作EP⊥x轴,易证△BDO≌△DEP,设D(,0),则E(,)设直线CE解析式是:y=kx+b,,把C,E两点坐标代入得:,∴∴CE解析式:y=x-4,y=0时,,x=4,∴F(4,0),OC=OF=4,∴PE=PF,∴EF=,∵A(-4,0),∴DF=4+a,DA=4-a,∴===.∴的值是.(4)连结BM,由正方形性质可得OM=OP,∠MOP=90º,由A,B点坐标可得AO=BO,又∵∠BOM=∠AOP(同角的余角相等),可证△BOM≌△AOP(SAS),∴∠MBO=∠PAO=480º-45º=445°,∴∠MBP=445º-45º=90°,在Rt△MBP中,MQ=PQ,BQ是此直角三角形斜边中线,等于斜边一半,∴BQ=MP;在Rt△MOP中,,MP=OP;∴BQ:OP=MP:OP=×OP:OP=,当点P在直线AB上运动时,的值不变,是,∴考点:4.一次函数性质;4.三角形全等;4.正方形性质.23、(1)300,72°;(2)详见解析;(3)600.【解析】
(1)从条形统计图中可得到“A”人数为69人,从扇形统计图中可得此部分占调查人数的23%,可求出调查人数;娱乐节目所对应的圆心角的度数占360°的20%,(2)求出“B”的人数,即可补全条形统计图,(3)样本估计总体,求出样本中喜欢动画节目的百分比,去估计总体所占的百分比,用总人数去乘这个百分比即可.【详解】解:(1)人,,故答案为:300,72°.(2)人,补全条形统计图如图所示;(3)人,答:该中学有2000名学生中,喜爱动画节目大约有600人.【点睛】考查条形统计图、扇形统计图的特点和制作方法,理解统计图中各个数据之间的关系是解决问题的关键,将两个统计图联系起来寻找数据之间的关系是常用的方法之一.24、6【解析】
根据菱形的性质得出AC⊥BD,DO=BO,然后根据Rt△AOB的勾股定理求出BO的长度,然后根据BD=2BO求出答案.【详解】∵四边形ABCD是菱形,对角线AC与BD相交于O,∴AC⊥BD,DO=BO,∵AB=5,AO=4,∴BO==3,∴BD=2BO=2×3=6考点:菱形的性质25、(1)张明:平均成绩80,方,60;王成:平均成绩80,中位,85,众,90;(2)王成;(3)张明学习成绩还需提高,优秀率有待提高.【解析】
(1)根据平均数、中位数、众数、方差的概念以及求解方法分别求解,填表即可;(2)分别计算两人的优秀率,然后比较即可;(3)比较这两位同学的方差,方差越小,成绩越稳定.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流运输数据库课程设计
- 2025年度定制化家具销售合同范本2篇
- 机器视觉课课程设计书
- 2025年度建筑设备安全施工与安装服务协议
- 二零二五年度商业综合体给排水专业分包合同2篇
- 2025年度知识产权质押委托保证反担保服务合同3篇
- 贪吃蛇课程设计c语言
- 英语语法课程设计依据
- 2025年中学校长开学典礼讲话(2篇)
- 网上投票系统课程设计
- 会计业务培训方案(2篇)
- 楚天华通医药设备有限公司纯化水设备介绍A32017年3月1日
- 投资合作备忘录标准格式
- 职场吐槽大会活动方案
- 《生物质热电联产工程设计规范》
- 微波治疗技术的临床应用指南
- 安徽省合肥市庐阳区部分学校2023-2024学年八年级上学期期末考试英语试题(含答案)
- JTG 3441-2024公路工程无机结合料稳定材料试验规程
- 羊肉销售人员工作汇报
- 律所标书模板
- 安徽省合肥市包河区四十八中学2023-2024学年数学七年级第一学期期末学业质量监测试题含解析
评论
0/150
提交评论