![河南省濮阳市九级2024年八年级数学第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view2/M01/04/39/wKhkFmYg-n2AWwyfAAHKRFIE3zE028.jpg)
![河南省濮阳市九级2024年八年级数学第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view2/M01/04/39/wKhkFmYg-n2AWwyfAAHKRFIE3zE0282.jpg)
![河南省濮阳市九级2024年八年级数学第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view2/M01/04/39/wKhkFmYg-n2AWwyfAAHKRFIE3zE0283.jpg)
![河南省濮阳市九级2024年八年级数学第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view2/M01/04/39/wKhkFmYg-n2AWwyfAAHKRFIE3zE0284.jpg)
![河南省濮阳市九级2024年八年级数学第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view2/M01/04/39/wKhkFmYg-n2AWwyfAAHKRFIE3zE0285.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省濮阳市九级2024年八年级数学第二学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.下列各组线段a、b、c中,能组成直角三角形的是()A.a=4,b=5,c=6 B.a=1,b=,c=2C.a=1,b=1,c=3 D.a=5,b=12,c=122.如图,在▱ABCD中,如果∠A+∠C=100°,则∠B的度数是()A.50° B.80° C.100° D.130°3.若一个多边形的内角和是900°,则这个多边形的边数是()A.5B.6C.7D.84.观察下列四个平面图形,其中是中心对称图形的个数是()A.1个 B.2个 C.3个 D.4个5.正比例函数y=kx(k≠0)的图象经过点(2,﹣1),则这个函数的图象必经过点()A.(﹣1,2) B.(1,2) C.(2,1) D.(﹣2,1)6.在平行四边形中,对角线、相交于点,若,则=()A. B. C. D.7.下列图形中,是中心对称但不是轴对称图形的有()A.1个 B.2个 C.3个 D.4个8.下列关于变量x,y的关系,其中y不是x的函数的是()A. B.C. D.9.若,,是Rt△ABC的三边,且,是斜边上的高,则下列说法中正确的有几个()(1),,能组成三角形(2),,能组成三角形(3),,能组成直角三角形(4),,能组成直角三角形A.1 B.2 C.3 D.410.如图,点A(0,2),在x轴上取一点B,连接AB,以A为圆心,任意长为半径画弧,分别交OA、AB于点M、N,再以M、N为圆心,大于MN的长为半径画弧,两弧交于点D,连接AD并延长交x轴于点P.若△OPA与△OAB相似,则点P的坐标为()A.(1,0) B.(,0) C.(,0) D.(2,0)二、填空题(每小题3分,共24分)11.用换元法解方程时,如果设,那么所得到的关于的整式方程为_____________12.如图,矩形ABCD的对角线AC,BD的交点为O,点E为BC边的中点,,如果OE=2,那么对角线BD的长为______.13.某市某活动中心组织了一次少年跳绳比赛,各年龄组的参赛人数如表所示:年龄组12岁13岁14岁15岁参赛人数5191313则全体参赛选手年龄的中位数是________.14.若关于x的方程(m-2)x|m|+2x-1=0是一元二次方程,则m=________.15.已知点P(x1,y1),Q(x2,y2)是反比例函数y=(x>0)图象上两点,若y1>y2,则x1,x2的大小关系是_____.16.如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=_____.17.若一次函数y=kx+b的图象经过点P(﹣2,3),则2k﹣b的值为_____.18.在正方形中,点在边上,点在线段上,且则_______度,四边形的面积_________.三、解答题(共66分)19.(10分)如图,在矩形ABCD中,AC=60cm,∠BAC=60°,点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,同时点F从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点E,F运动的时间是t秒(0<t≤15).过点F作OF⊥BC于点O,连接OE,EF.(1)求证:AE=OF;(2)四边形AEOF能够成为菱形吗?如果能,求出相应的t值,如果不能,请说明理由;(3)当t为何值时,△OEF为直角三角形?请说明理由.20.(6分)如图,菱形中,是的中点,,.(1)求对角线,的长;(2)求菱形的面积.21.(6分)两地相距300,甲、乙两车同时从地出发驶向地,甲车到达地后立即返回,如图是两车离地的距离()与行驶时间()之间的函数图象.(1)求甲车行驶过程中与之间的函数解析式,并写出自变量的取值范围.(2)若两车行驶5相遇,求乙车的速度.22.(8分)如图,在正方形网格中,△TAB的顶点坐标分别为T(1,1)、A(2,3)、B(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将△TAB放大为原来的3倍,放大后点A、B的对应点分别为A'、B',画出△TA'B':(2)写出点A'、B'的坐标:A'()、B'();(3)在(1)中,若C(a,b)为线段AB上任一点,则变化后点C的对应点C'的坐标为().23.(8分)如图,在四边形ABCD中,BD垂直平分AC,垂足为F,分别过点B作直线BE∥AD,过点A作直线EA⊥AC于点A,两直线交于点E.(1)求证:四边形AEBD是平行四边形;(2)如果∠ABE=∠ABD=60°,AD=2,求AC的长.24.(8分)如图,已知□ABCD边BC在x轴上,顶点A在y轴上,对角线AC所在的直线为y=+6,且AC=AB,若点P从点A出发以1cm/s的速度向终点O运动,同时点Q从点C出发以2cm/s的速度沿射线CB运动,当点P到达终点O时,点Q也随之停止运动.设点P的运动时间为t(s).(1)直接写出顶点D的坐标(______,______),对角线的交点E的坐标(______,______);(2)求对角线BD的长;(3)是否存在t,使S△POQ=S▱ABCD,若存在,请求出的t值;不存在说明理由.(4)在整个运动过程中,PQ的中点到原点O的最短距离是______cm,(直接写出答案)25.(10分)关于x的一元二次方程有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.26.(10分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.(1)求证:;(2)求的度数;(3)若,求的长.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.【详解】A、∵42+52≠62,∴该三角形不是直角三角形,故此选项不符合题意;B、∵12+2=22,∴该三角形是直角三角形,故此选项符合题意;C、∵12+12≠32,∴该三角形不是直角三角形,故此选项不符合题意;D、∵52+122≠122,∴该三角形不是直角三角形,故此选项不符合题意.故选B.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2、D【解析】
四边形ABCD是平行四边形,可得∠A=∠C,又由∠A+∠C=200°,即可求得∠A的度数,继而求得答案.【详解】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=100°,∴∠A=∠C=50°,∴∠B=180°﹣∠A=130°.故选:D.【点睛】此题考查了平行四边形的性质.此题比较简单,熟记平行四边形的各种性质是解题的关键.3、C【解析】
根据多边形的内角和公式(n﹣2)•180°,列式求解即可.【详解】设这个多边形是n边形,根据题意得,(n﹣2)•180°=900°,解得n=1.故选:C.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.4、C【解析】
根据中心对称图形的概念求解.【详解】第一个,是中心对称图形,故选项正确;第二个,是中心对称图形,故选项正确;第三个,不是中心对称图形,故选项错误;第四个,是中心对称图形,故选项正确.故选C.【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、D【解析】
先把点(2,﹣1),代入正比例函数y=kx(k≠0),求出k的值,故可得出此函数的解析式,再把各点代入此函数的解析式进行检验即可.【详解】解:∵正比例函数y=kx(k≠0)的图象经过点(2,﹣1),∴﹣1=2k,解得k=﹣,∴正比例函数的解析式为y=﹣x.A、∵当x=﹣1时,y=≠2,∴此点不在正比例函数的图象上,故本选项错误;B、∵当x=1时,y=﹣≠2,∴此点不在正比例函数的图象上,故本选项错误;C、当x=2时,y=﹣1≠1,∴此点不在正比例函数的图象上,故本选项错误;D、当x=﹣2时,y=1,∴此点在正比例函数的图象上,故本选项正确.故选:D.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.也考查了待定系数法求正比例函数的解析式.6、D【解析】
根据平行四边形的性质即可得到结论.【详解】解:∵四边形ABCD是平行四边形,
∴S△AOB=S四边形ABCD=×24=6,
故选:D.【点睛】本题考查了平行四边形的性质,熟练掌握平行四边形的性质是解题的关键.7、B【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:第1个图形,是轴对称图形,不是中心对称图形,故错误;第2个图形,不是轴对称图形,是中心对称图形,故正确;第3个图形,不是轴对称图形,是中心对称图形,故正确;第4个图形,是轴对称图形,也是中心对称图形,故错误;故选B.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解析】
根据函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数,x是自变量,进而判断得出即可.【详解】解:选项ABD中,对于x的每一个确定的值,y都有唯一的值与其对应,故y是x的函数;只有选项C中,x取1个值,y有2个值与其对应,故y不是x的函数.故选C.【点睛】此题主要考查了函数的定义,正确掌握函数定义是解题关键.9、C【解析】
根据勾股定理的逆定理和三角形的三边关系进行逐个分析即可.【详解】(1)a2+b2=c2,根据两边之和得大于第三边,故本项说法错误;(2)∵,,又∵a+b>c,∴,∴,即本项说法正确;(3)因为(c+h)2-h2=c2+2ch,ch=ab(直角三角形面积=两直角边乘积的一半=斜边和斜边上的高乘积的一半)∴2ch=2ab,∴(c+h)2-h2=c2+2ch=a2+b2+2ab=(a+b)2,所以本项说法正确;(4)因为,所以本项说法正确.所以说法正确的有3个.故选:C.【点睛】本题主要考查直角三角形的性质,勾股定理的逆定理,三角形的三边关系,关键在于熟练运用勾股定理的逆定理,认真的进行计算.10、C【解析】
根据点D的画法可得出AD平分∠OAB,由角平分线的性质结合相似三角形的性质可得出∠OBA=∠OAB,利用二角互补即可求出∠OBA=∠OAP=30°,通过解含30度角的直角三角形即可得出点P的坐标.【详解】解:由点D的画法可知AD平分∠OAB.∵△OPA∽△OAB,∴∠OAP=∠OBA=∠OAB.∵∠OAB+∠OBA=∠OAB+∠OAB=90°,∴∠OAB=60°,∠OAP=30°,∴AP=2OP.在Rt△OAP中,∠AOP=90°,OA=2,,∴OP=,∴点P的坐标为(,0).故选:C.【点睛】本题考查了基本作图、角平分线的性质、相似三角形的性质以及解含30度角的直角三角形,求出∠OAP=30°是解题的关键.二、填空题(每小题3分,共24分)11、【解析】
可根据方程特点设,则原方程可化为-y=1,再去分母化为整式方程即可.【详解】设,则原方程可化为:-y=1,去分母,可得1-y2=y,即y2+y-1=1,故答案为:y2+y-1=1.【点睛】本题考查用换元法解分式方程的能力.用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,再将分式方程可化为整式方程.12、1【解析】
由30°角直角三角形的性质求得,然后根据矩形的两条对角线相等且平分来求的长度.【详解】解:在矩形中,对角线,的交点为,,,.又∵点为边的中点,,,,,,.故答案为:1.【点睛】本题主要考查对矩形的性质,三角形的中位线定理,能根据矩形的性质和30°角所对的直角边等于斜边的一半求出的长是解此题的关键.题型较好,难度适中.13、1【解析】
根据中位数的定义来求解即可,中位数是指将数据按大小顺序排列起来,形成一个数列,居于数列中间位置的那个数据.【详解】解:本次比赛一共有:5+19+13+13=50人,∴中位数是第25和第26人的年龄的平均数,∵第25人和第26人的年龄均为1岁,∴全体参赛选手的年龄的中位数为1岁.故答案为1.【点睛】中位数的定义是本题的考点,熟练掌握其概念是解题的关键.14、-2【解析】方程(m-2)x|m|+2x-1=0是一元二次方程,可得且m-2≠0,解得m=-2.15、x1<x1.【解析】
根据题目中的函数解析式可以判断函数图象在第几象限和y随x的变化趋势,从而可以解答本题.【详解】∵反比例函数y=(x>0),∴该函数图象在第一象限,y随x的增大而减小,∵点P(x1,y1),Q(x1,y1)是反比例函数y=(x>0)图象上两点,y1>y1,∴x1<x1,故答案为:x1<x1.【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答.16、22.5°【解析】
根据正方形的对角线平分一组对角求出∠CBE=45°,再根据等腰三角形两底角相等求出∠BCE=67.5°,然后根据∠DCE=∠BCD-∠BCE计算即可得解.【详解】∵四边形ABCD是正方形,∴∠CBE=45°,∠BCD=90°,∵BE=BC,∴∠BCE=(180°-∠BCE)=×(180°-45°)=67.5°,∴∠DCE=∠BCD-∠BCE=90°-67.5°=22.5°.故答案为22.5°.【点睛】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,需熟记.17、-3【解析】
把坐标带入解析式即可求出.【详解】y=kx+b的图象经过点P(﹣2,3),∴3=﹣2k+b,∴2k﹣b=﹣3,故答案为﹣3;【点睛】此题主要考查一次函数的性质,解题的关键是熟知一次函数的图像.18、,【解析】
(1)将已知长度的三条线段通过旋转放到同一个三角形中,利用勾股定理即可求解;(2)过点A作于点G,在直角三角形BGA中求出AB长,算出正方形ABCD的面积、三角形APB和三角形APD的面积,作差即得四边形的面积【详解】解:(1)将绕点A旋转后得到,连接绕点A旋转后得到根据勾股定理得(2)过点A作于点G由(1)知,即为等腰直角三角形,根据勾股定理得故答案为:(1).,(2).【点睛】本题考查了旋转的性质及勾股定理和逆定理,利用旋转作出辅助线是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)能,10;(3)t=或t=12,理由见解析.【解析】
(1)利用矩形的性质和直角三角形中所对应的直角边是斜边的一半进行作答;(2)证明平行四边形是菱形,分情况进行讨论,得到等式;(3)分别讨论若四边形AEOF是平行四边形时,则①∠OFE=90˚或②∠OEF=90˚,分情况讨论列等式.【详解】解:(1)∵四边形ABCD是矩形∴∠B=90˚在Rt△ABC中,∠ACB=90˚-∠BAC=30˚∵AE=2tCF=4t又∵Rt△COF中,∠ACB=30˚∴OF=CF=2t∴AE=OF(2)∵OF∥AB,AE=OF∴四边形AEOF是平行四边形当AE=AF时,平行四边形AEOF是菱形即:2t=60-4t解得:t=10∴当t=10时,平行四边形AEOF是菱形(3)①当∠OFE=90˚时,则有:EF∥BC∴∠AFE=∠ACB=30˚,∠AEF=∠B=90˚在Rt△AEF中,∠AFE=30˚∴AF=2AE即:60-4t=22t解得:t=②当∠OEF=90˚时,四边形AEOF是平行四边形则有:OE∥AC∴∠AFE=∠OEF=90˚在Rt△AEF中,∠BAC=60˚,∠AEF=30˚∴AE=2AF即:2t=2(60-4t)解得:t=12∴当t=或t=12时,△OEF为直角三角形.【点睛】本题主要考查矩形的性质、平行四边形的证明应用、菱形的证明、直角三角形中角的综合运用,根据题目中不同的信息列出不同的等式进行解答.20、(1),;(2)【解析】
(1)根据是的中点,得到,再根据菱形的性质得到是等边三角形,得到BD的长,再利用勾股定理进而可以求出AO的长度,根据AC=2AO得到答案;(2)根据菱形的面积等于两对角线的积的一半,列式求解即可得到答案;【详解】解:(1)为的中点,,菱形中,,,是等边三角形,,,;(2)菱形的面积;【点睛】本题主要考查了菱形的性质、菱形的面积计算、等边三角形的判定与性质,掌握菱形的面积=两对角线的积的一半是解题的关键;21、(1);(2)40千米/小时.【解析】
(1)甲车行驶过程中y与x之间的函数解析式两种,即从A地到B地是正比例函数,返回时是一次函数,自变量的取值范围分别为(0<x≤4)和(4<x≤7),
(2)求出乙车的y与x的关系式,再与甲车返回时的关系式组成方程组解出即可.【详解】解:(1)设甲车从A地驶向B地y与x的关系式为y=kx,把(4,300)代入得:
300=4k,解得:k=75,
∴y=75x
(0<x≤4)
设甲车从B地返回A地y与x的关系式为y=kx+b,把(4,300)(7,0)代入得:
,解得:k=-100,b=700,
∴y=-100x+700
(4<x≤7),
答:甲车行驶过程中y与x之间的函数解析式为:,
(2)设乙车速度为m千米/小时,依据两车行驶5相遇,在甲车返回时相遇,即甲乙两车离A的距离相等,得:5m=-100×5+700
解得:m=40
答:乙车的速度为40千米/小时.【点睛】考查一次函数的性质、待定系数法求函数的关系式、一次函数与一次方程的关系等知识,理解变量之间的关系是前提,正确识别图象是关键.22、(1)详见解析;(1)A′(4,7),B′(10,4)(3)(3a-1,3b-1)【解析】
(1)根据题目的叙述,在位似中心的同侧将△TAB放大为原来的3倍,得到对应点坐标,正确地作出图形即可,
(1)根据图象确定各点的坐标即可.
(3)根据(1)中变换的规律,即可写出变化后点C的对应点C′的坐标.【详解】解:(1)如图所示:
(1)点A′,B′的坐标分别为:A′(4,7),B′(10,4);
故答案为:(4,7);(10,4);
(3)变化后点C的对应点C′的坐标为:C′(3a-1,3b-1)
故答案为:3a-1,3b-1.【点睛】本题考查了位似变换作图的问题,正确理解位似变换的定义,会进行位似变换的作图是解题的关键.23、(1)证明见解析;(2).【解析】
(1)根据平行四边形的判定定理即可得到结论;(2)根据平行线的性质得到∠DAB=∠ABE=60°,推出△ABD是等边三角形,由BD垂直平分AC,得到∠AFD=90°,AC=2AF,解直角三角形即可得到结论.【详解】(1)∵BD垂直平分AC,EA⊥AC,∴AE∥BD.∵BE∥AD,∴四边形AEBD是平行四边形;(2)∵AD∥BE,∴∠DAB=∠ABE=60°.∵∠ABD=60°,∴△ABD是等边三角形.∵BD垂直平分AC,∴∠AFD=90°,AC=2AF.∵AD=2,∴AF,∴AC=.【点睛】本题考查了平行四边形的判定和性质,解直角三角形,等边三角形的判定和性质,正确的识别图形是解题的关键.24、(1)16;6;4;3;(2)BD=6;(3)存在,t值为2;(4)此时PQ的中点到原点O的最短距离为.【解析】
(1)令x=0,y=0代入解析式得出A,C坐标,进而利用平行四边形的性质解答即可;(2)根据平行四边形的性质得出点B,D坐标,利用两点间距离解答即可;(3)利用三角形的面积公式和平行四边形的面积公式列出方程解答即可;(4)根据直角三角形斜边上中线等于斜边的一半可知,当PQ长度最短时,PQ的中点到原点O的距离最短解答即可.【详解】(1)把x=0代入y=+6,可得y=6,即A的坐标为(0,6),把y=0代入y=+6,可得:x=8,即点C的坐标为(8,0),根据平行四边形的性质可得:点B坐标为(-8,0),所以AD=BC=16,所以点D坐标为(16,6),点E为对角线的交点,故点E是AC的中点,E的坐标为(4,3),故答案为16;6;4;3;(2)因为B(-8,0)和D(16,6),∴BD=;(3)设时间为t,可得:OP=6-t,OQ=8-2t,∵S△POQ=S▱ABCD,当0<t≤4时,,解得:t1=2,t2=8(不合题意,舍去),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中学市场营销专员聘请合同
- 2025年电商培训项目申请报告
- 2025年个人施工合同规范文本
- 2025年水分计项目立项申请报告模式
- 2025年公务员劳动合同官方版
- 2025年五金制品购销合同样本大全
- 2025年甾体药物项目规划申请报告
- 2025年婚约取消财产恢复协议标准化范本
- 2025年个人车位共享合同样本
- 2025官方版土地买卖合同协议范本
- 二年级综合实践活动课件-我与蔬菜交朋友-全国通(41张)
- 血型与输血检验-临床输血(临床检验课件)
- 良性前列腺增生症住院医师规范化培训教学查房
- 高中数学知识点大全
- 人机料法环测5M1E分析法
- 游泳社会指导员专项理论考试复习题库汇总(附答案)
- 《简单教数学》读书-分享-
- 口腔颌面外科学 功能性外科
- 脊椎动物学知识点归纳各纲特征
- GB/T 27476.5-2014检测实验室安全第5部分:化学因素
- 一级医院基本标准1
评论
0/150
提交评论