2024届湖北省黄石市陶港中学八年级下册数学期末达标检测试题含解析_第1页
2024届湖北省黄石市陶港中学八年级下册数学期末达标检测试题含解析_第2页
2024届湖北省黄石市陶港中学八年级下册数学期末达标检测试题含解析_第3页
2024届湖北省黄石市陶港中学八年级下册数学期末达标检测试题含解析_第4页
2024届湖北省黄石市陶港中学八年级下册数学期末达标检测试题含解析_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省黄石市陶港中学八年级下册数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.已知关于x的函数y=k(x-1)和y=(k≠0),它们在同一坐标系内的图象大致是()A. B. C. D.2.如图,四边形中,,,于,于,若,的面积为,则四边形的边长的长为()A. B. C. D.3.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75° B.60° C.55° D.45°4.点P(1,a),Q(﹣2,b)是一次函数y=kx+1(k<0)图象上两点,则a与b的大小关系是()A.a>b B.a=b C.a<b D.不能确定5.下列方程中有一根为3的是()A.x2=3 B.x2﹣4x﹣3=0C.x2﹣4x=﹣3 D.x(x﹣1)=x﹣36.如图,在中,,于点,和的角平分线相较于点,为边的中点,,则()A.125° B.145° C.175° D.190°7.下列给出的四个点中,在函数y=2x﹣3图象上的是()A.(1,﹣1)B.(0,﹣2)C.(2,﹣1)D.(﹣1,6)8.如图,在平行四边形ABCD中,AB=4,AD=6,∠D=120°,延长CB至点M,使得BM=BC,连接AM,则AM的长为()A.3.5 B. C. D.9.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min10.下列各命题是假命题的是()A.平行四边形的对角相等 B.四条边都相等的四边形是菱形C.正方形的两条对角线互相垂直 D.矩形的两条对角线互相垂直二、填空题(每小题3分,共24分)11.如图,∠DAB=∠CAE,请补充一个条件:________________,使△ABC∽△ADE.12.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是__.13.如图,在平面直角坐标系中,菱形OABC的顶点O是原点,顶点B在y轴正半轴上,顶点A在第一象限,菱形的两条对角线长分别是8和6,函数y=kx(x<0)的图象经过点C,则k的值为________14.如图,在四边形中,是边的中点,连接并延长,交的延长线与点,,请你添加一个条件(不需要添加任何线段或字母),使之能推出四边形为平行四边形,你添加的条件是_________,并给予证明.15.如图,在边长为1的正方形网格中,两格点之间的距离为__________1.(填“”,“”或“”).16.如图,四边形ABCD中,E、F、G、H分别为各边的中点,顺次连结E、F、G、H,把四边形EFGH称为中点四边形.连结AC、BD,容易证明:中点四边形EFGH一定是平行四边形.(1)如果改变原四边形ABCD的形状,那么中点四边形的形状也随之改变,通过探索可以发现:当四边形ABCD的对角线满足AC=BD时,四边形EFGH为菱形;当四边形ABCD的对角线满足时,四边形EFGH为矩形;当四边形ABCD的对角线满足时,四边形EFGH为正方形.(2)试证明:S△AEH+S△CFG=S□ABCD(3)利用(2)的结论计算:如果四边形ABCD的面积为2012,那么中点四边形EFGH的面积是(直接将结果填在横线上)17.若分式方程有增根,则a的值为_____.18.将直线向上平移个单位后,可得到直线_______.三、解答题(共66分)19.(10分)阅读下列材料:数学课上,老师出示了这样一个问题:如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现与存在某种数量关系”;小强:“通过观察和度量,发现图1中线段与相等”;小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.请回答:(1)求证:;(2)探究线段、、之间的数量关系,并证明;(3)若,,求的值(用含的代数式表示).20.(6分)如图,反比例函数y=(n为常数,n≠0)的图象与一次函数y=kx+8(k为常数,k≠0)的图象在第三象限内相交于点D(﹣,m),一次函数y=kx+8与x轴、y轴分别相交于A、B两点.已知cos∠ABO=.(1)求反比例函数的解析式;(2)点P是x轴上的动点,当△APC的面积是△BDO的面积的2倍时,求点P的坐标.21.(6分)已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为、,点D是OA的中点,点P在BC边上运动,当是等腰三角形时,点Р的坐标为_______________.22.(8分)某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?23.(8分)如图,在中,,是的中点,是的中点,过点作交的延长线于点(1)求证:四边形是菱形(2)若,求菱形的面积24.(8分)如图,等边三角形ABC的边长是6,点D、F分别是BC、AC上的动点,且BD=CF,以AD为边作等边三角形ADE,连接BF、EF.(1)求证:四边形BDEF是平行四边形;(2)连接DF,当BD的长为何值时,△CDF为直角三角形?(3)设BD=x,请用含x的式子表示等边三角形ADE的面积.25.(10分)在矩形ABCD中,AB=12,BC=25,P是线段AB上一点(点P不与A,B重合),将△PBC沿直线PC折叠,顶点B的对应点是点G,CG,PG分别交线段AD于E,O.(1)如图1,若OP=OE,求证:AE=PB;(2)如图2,连接BE交PC于点F,若BE⊥CG.①求证:四边形BFGP是菱形;②当AE=9,求的值.26.(10分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?

参考答案一、选择题(每小题3分,共30分)1、A【解析】若k>0时,反比例函数图象经过二四象限;一次函数图象经过一三四象限;若k<0时,反比例函数经过一三象限;一次函数经过二三四象限;由此可得只有选项A正确,故选A.2、A【解析】

先证明△ACD≌△BEA,在根据△ABC的面积为8,求出BE,然后根据勾股定理即可求出AB.【详解】解:∵BE⊥AC,CD⊥AC,∴∠ACD=∠BEA=90°,∴∠CDB+∠DCA=90°,又∵∠DAB=∠DAC+∠BAC=90°在△ACD和△AEB中,∴△ACD≌△BEA(AAS)∴AC=BE∵△ABC的面积为8,∴,解得BE=4,在Rt△ABE中,.故选择:A.【点睛】本题主要考查了三角形全等和勾股定理的知识点,熟练三角形全等的判定和勾股定理是解答此题的关键.3、B【解析】

由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和定理得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【详解】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点睛】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.4、C【解析】

先把点P(1,a),Q(-2,b)分别代入一次函数解析式得到k+1=a,-2k+1=b,然后根据k<0得到k<-2k,则即可得到a、b的大小关系.【详解】把点P(1,a),Q(-2,b)分别代入y=kx+1得k+1=a,-2k+1=b,∵k<0,∴a<b.故选C.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b(k≠0)的图象上的点满足其解析式.5、C【解析】

利用一元二次方程解的定义对各选项分别进行判断.【详解】解:当x=3时,x2=9,所以x=3不是方程x2=3的解;当x=3时,x2﹣4x﹣3=9﹣12﹣3=﹣6,所以x=3不是方程x2﹣4x﹣3=0的解;当x=3时,x2﹣4x=9﹣12=﹣3,所以x=3是方程x2﹣4x=﹣3的解;当x=3时,x(x﹣1)=6,x﹣3,0,所以x=3是方程x(x﹣1)=x﹣3的解.故选:C.【点睛】本题考查了一元二次方程根的定义,即把根代入方程此时等式成立6、C【解析】

根据直角三角形的斜边上的中线的性质,即可得到△CDF是等边三角形,进而得到∠ACD=60°,根据∠BCD和∠BDC的角平分线相交于点E,即可得出∠CED=115°,即可得到∠ACD+∠CED=60°+115°=175°.【详解】如图:∵CD⊥AB,F为边AC的中点,∴DF=AC=CF,又∵CD=CF,∴CD=DF=CF,∴△CDF是等边三角形,∴∠ACD=60°,∵∠B=50°,∴∠BCD+∠BDC=130°,∵∠BCD和∠BDC的角平分线相交于点E,∴∠DCE+∠CDE=65°,∴∠CED=115°,∴∠ACD+∠CED=60°+115°=175°,故选:C.【点睛】本题主要考查了直角三角形的斜边上的中线的性质,在直角三角形中,斜边上的中线等于斜边的一半.7、A【解析】

把点的坐标代入解析式,若左边等于右边,则在图象上.【详解】各个点的坐标中,只有A(1,-1)能是等式成立,所以,在函数y=2x﹣3图象上的是(1,﹣1).故选:A【点睛】本题考核知识点:函数图象上的点.解题关键点:理解函数图象上的点的意义.8、B【解析】

作AN⊥BM于N,求出∠BAN=30°,由含30°角的直角三角形的性质得出BN、AN的长,由勾股定理即可得出答案.【详解】作AN⊥BM于N,如图所示:

则∠ANB=∠ANM=90°,

∵四边形ABCD是平行四边形,

∴BC=AD=6,∠ABC=∠D=120°,

∴∠ABN=60°,

∴∠BAN=30°,

∴BN=AB=2,AN=,∵BM=BC=3,

∴MN=BM-BN=1,

∴AM=,故选:B.【点睛】本题考查了平行四边形的性质、含30°角的直角三角形的性质以及勾股定理等知识;熟练掌握平行四边形的性质和含30°角的直角三角形的性质是解题的关键.9、D【解析】A、依题意得他离家8km共用了30min,故选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故选项正确;D、公交车(30-16)min走了(8-1)km,故公交车的速度为7000÷14=500m/min,故选项错误.故选D.10、D【解析】

利于平行四边形的性质、菱形的判定定理、正方形的性质及矩形的性质分别判断后即可确定正确的选项.【详解】A.平行四边形的对角相等,正确,为真命题;B.四条边都相等的四边形是菱形,正确,是真命题;C.正方形的两条对角线互相垂直,正确,为真命题;D.矩形的两条对角线相等但不一定垂直,故错误,为假命题,故选D.【点睛】此题考查命题与定理,解题关键在于掌握各性质定理.二、填空题(每小题3分,共24分)11、解:∠D=∠B或∠AED=∠C.【解析】

根据相似三角形的判定定理再补充一个相等的角即可.【详解】解:∵∠DAB=∠CAE

∴∠DAE=∠BAC

∴当∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD•AC=AB•AE时两三角形相似.

故答案为∠D=∠B(答案不唯一).12、4.1【解析】

首先连接OP,由矩形的两条边AB、BC的长分别为6和1,可求得OA=OD=5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【详解】解:连接OP,

∵矩形的两条边AB、BC的长分别为6和1,

∴S矩形ABCD=AB•BC=41,OA=OC,OB=OD,AC=BD=,

∴OA=OD=5,

∴S△ACD=S矩形ABCD=24,

∴S△AOD=S△ACD=12,

∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,

解得:PE+PF=4.1.

故答案为:4.1.【点睛】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13、-12.【解析】

根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx中求得k值即可【详解】根据题意可得点C的坐标为(-4,3),将点C的坐标代入y=kx3=k-4解得k=-12.故答案为:-12.【点睛】本题考查了菱形的性质及求反比例函数的解析式,求得点C的坐标为(-4,3)是解决问题的关键.14、添加的条件是:∠F=∠CDE【解析】

由题目的已知条件可知添加∠F=∠CDE,即可证明△DEC≌△FEB,从而进一步证明DC=BF=AB,且DC∥AB,进而证明四边形ABCD为平行四边形.【详解】条件是:∠F=∠CDE,理由如下:∵∠F=∠CDE∴CD∥AF在△DEC与△FEB中,,∴△DEC≌△FEB∴DC=BF,∠C=∠EBF∴AB∥DC∵AB=BF∴DC=AB∴四边形ABCD为平行四边形故答案为:∠F=∠CDE.【点睛】本题是一道探索性的试题,考查了平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键.15、<【解析】

根据勾股定理即可得到结论.【详解】解:点A,B之间的距离d=<1,

故答案为:<.【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.16、;(2)详见解析;(3)1【解析】

(1)若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD.

(2)由相似三角形的面积比等于相似比的平方求解.

(3)由(2)可得S▱EFGH=S四边形ABCD=1【详解】(1)解:若四边形EFGH为矩形,则应有EF∥HG∥AC,EH∥FG∥BD,EF⊥EH,故应有AC⊥BD;

若四边形EFGH为正方形,同上应有AC⊥BD,又应有EH=EF,而EF=AC,EH=BD,故应有AC=BD;

(2)S△AEH+S△CFG=S四边形ABCD

证明:在△ABD中,

∵EH=BD,

∴△AEH∽△ABD.

∴=()2=

即S△AEH=S△ABD

同理可证:S△CFG=S△CBD

∴S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD;(3)解:由(2)可知S△AEH+S△CFG=(S△ABD+S△CBD)=S四边形ABCD,

同理可得S△BEF+S△DHG=(S△ABC+S△CDA)=S四边形ABCD,

故S▱EFGH=S四边形ABCD=1.【点睛】本题考查了三角形的中位线的性质及特殊四边形的判定和性质,相似三角形的性质.17、3【解析】

分式方程去分母转化为整式方程,由分式方程有增根求出x的值,代入整式方程计算即可求出a的值.【详解】解:分式方程去分母得:x﹣5(x﹣3)=a,由分式方程有增根,得到x﹣3=0,即x=3,把x=3代入整式方程得:a=3,故答案为:3【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.18、【解析】

根据“上加下减”原则进行解答即可.【详解】由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即故答案为:【点睛】本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.三、解答题(共66分)19、(1)详见解析;(2),证明详见解析;(3)【解析】

(1)依题意由SAS可证:.可推(2)过点作,且,连接、,由SAS可证可得,可得.利用勾股定理即可知:.即.(3)延长至使,连接.设,,则,,,,.由SAS可证,可得,,由角关系推出.所以.推出,所以.得出结论.【详解】(1)证明:∵四边形为正方形,∴,.∵,∴.∴.(2)结论:.证明:如图2,过点作,且,连接、,则,.∵,,∴∴,.∴.∴.即.(3)解:延长至使,连接.设,,则,,.∵四边形为正方形,∴,,,.∴,∴,,.∴.∴.∴.∴.【点睛】该题综合性较强,运用了全等三角形、等腰三角形,以及三角形内角和等知识点,灵活运用全等是解题的关键.20、(1)y=x+1,y=(2)(﹣11,0)或(6,0)【解析】

(1)求得A(﹣6,0),即可得出一次函数解析式为y=x+1,进而得到D(,﹣2),即可得到反比例函数的解析式为y=;(2)解方程组求得C(,10),依据△APC的面积是△BDO的面积的2倍,即可得到AP=12,进而得到P(﹣11,0)或(6,0).【详解】解:(1)∵一次函数y=kx+1与y轴交于点B,∴B(0,1).∵在Rt△AOB中,cos∠ABO=,∴tan∠BAO=,∴AO=6,∴A(﹣6,0).∵点A在一次函数y=kx+1图象上,∴k=,∴一次函数解析式为y=x+1.∵点D(,m)在一次函数y=kx+1图象上,∴m=﹣2,即D(,﹣2),∵点D(,﹣2)在反比例函数y=图象上,∴n=2.∴反比例函数的解析式为y=;(2)∵点C是反比例函数y=图象与一次函数y=x+1图象的交点,∴,解得,∴C(,10).∵△APC的面积是△BDO的面积的2倍,∴AP×10=×1×,∴AP=12,又∵A(﹣6,0),点P是x轴上的动点,∴P(﹣11,0)或(6,0).【点睛】本题考查反比例函数与一次函数的交点、用待定系数法求函数解析式、三角函数、三角形面积的计算等知识;求出点A和D的坐标是解决问题的关键.21、,,,;【解析】

题中没指明△ODP的腰长与底分别是哪个边,故应该分情况进行分析,从而求得点P的坐标.【详解】(1)OD是等腰三角形的底边时,此时P(2.5,4);(2)OD是等腰三角形的一条腰时:①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,在直角∆OPC中,CP===3,则P的坐标是(3,4);②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,过D作DM⊥BC于点M,在直角∆PDM中,PM==3,当P在M的左边时,CP=5-3=2,则P的坐标是(2,4);当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4);故P的坐标为:(2.5,4);(3,4);(2,4)或(8,4).故答案为:(2.5,4);(3,4);(2,4)或(8,4)【点睛】本题考查了等腰三角形的性质和勾股定理的运用解答,注意正确地进行分类,考虑到所有可能的情况是解题的关键.22、(1)甲、乙两施工队每天分别能完成绿化的面积是100m2、50m2;(2)y=24-2x;(3)当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a【解析】

(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意列出分式方程即可求解;(2)根据总社区计划对面积为1200m2,即可列出函数关系式;(3)先根据工期不得超过14天,求出x的取值,再根据列出总费用w的函数关系式,即可求解.【详解】(1)设乙施工队每天能完成绿化的面积是xm2,则甲施工队每天能完成绿化的面积是2xm2,根据题意,解得x=50,经检验,x=50是方程的解,故甲、乙两施工队每天分别能完成绿化的面积是100m2、50m2;(2)依题意得100x+50y=1200,化简得y=24-2x,故求y与x的函数解析式为y=24-2x;(3)∵工期不得超过14天,∴x+y≤14,0≤x≤14,0≤y≤14即x+24-2x≤14,解得x≥10,∴x的取值为10≤x≤12;设总施工费用为w,则当x=10时,w=(1600+a)×10+(700+a)×4=18800+14a,当x=11时,w=(1600+a)×11+(700+a)×2=19000+12a当x=12时,w=(1600+a)×12=19200+12a,∵100≤a≤300,经过计算得当100≤a≤200时,甲队施工10天,乙队施工4天费用最小,为18800+14a,当200≤a≤300时,甲队施工11天,乙队施工2天费用最小,为19000+12a【点睛】此题主要考查一次函数的应用,解题的关键是根据题意找到等量关系进行求解.23、(1)见解析(2)10【解析】

(1)先证明,得到,,再证明四边形是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到,即可证明四边形是菱形。(2)连接,证明四边形是平行四边形,得到,利用菱形的求面积公式即可求解。【详解】(1)证明:∵,∴,∵是的中点,是边上的中线,∴,在和中,,∴,∴.∵,∴.∵,∴四边形是平行四边形,∵,是的中点,是的中点,∴,∴四边形是菱形;(2)如图,连接,∵,∴四边形是平行四边形,∴,∵四边形是菱形,∴.【点睛】本题主要考查全等三角形的应用,菱形的判定定理以及菱形的性质,熟练掌握菱形的的判定定理和性质是解此题的关键。24、(1)见解析;(2)BD=2或4;(3)S△ADE=(x﹣3)2+(0≤x≤6)【解析】

(1):要证明四边形BDEF是平行四边形,一般采用对边平行且相等来证明,因为已经有了DB=CF,只要有△ABD全等△ACE,就能得到∠ACE=∠ABD=60°,CE=CF=EF=BD,再利用∠CFE=60°=∠ACB,就能平行,故第一问的证;(2):反推法,当△CDF为直角三角形,又因为∠C=60°,当∠CDF=90°时,可以知道2CD=CF,因为CF=BD,BD+CD=6,∴BD=4,当∠CFD=90°时,可以知道CD=2CF,因为CF=BD,BD+CD=6,∴BD=2,故当BD=2或4时,△CFD为直角三角形;(3):求等边三角形ADE的面积,只要知道边长就可求出,但是AD是变化的,所以我们采用组合面积求解,利用四边形ADCE减去△CDE即可,又因为△ABD≌△ACE,所以四边形ADCE的面积等于△ABD的面积,所以只需要求出△ABC的面积与△CDE即可,从而即可求面积.【详解】解:(1)∵△ABC是等边三角形,∴AB=BC,∠BAC=∠ABD=∠BCF=60°,∵BD=CF,∴△ABD≌△BCF(SAS),∴BD=CF,如图1,连接CE,∵△ADE是等边三角形,∴AD=AE,∠DAE=60°,∴∠BAD=∠CAE,∵AB=AC,∴△ABD≌△ACE(SAS),∴∠ACE=∠ABD=60°,BD=CE,∴CF=CE,∴△CEF是等边三角形,∴EF=CF=BD,∠CFE=60°=∠ACB,∴EF∥BC,∵BD=EF,∴四边形BDEF是平行四边形;(2)∵△CDF为直角三角形,∴∠CFD=90°或∠CDF=90°,当∠CFD=90°时,∵∠ACB=60°,∴∠CDF=30°,∴CD=2CF,由(1)知,CF=BD,∴CD=2BD,即:BC=3BD=6,∴BD=2,∴x=2,当∠CDF=90°时,∵∠ACB=60°,∴∠CFD=30°,∴CF=2CD,∵CF=BD,∴BD=2CD,∴BC=3CD=6,∴CD=2,∴x=BD=4,即:BD=2或4时,△CDF为直角三角形;(3)如图,连接CE,由(1)△ABD≌△ACE,∴S△ABD=S△ACE,BD=CE,∵BD=CF,∴△CEF是等边三角形,∴EM=CE=x,∴S△CDE=CD×EM=(6﹣x)×x=x(6﹣x)∴BH=CH=BC=3,∴AH=3,∴S△ABC=BC•AH=9∴S△ADE=S四边形ADCE﹣S△CDE=S△ACD+S△ACE﹣S△CDE=S△ACD+S△ABD﹣S△CDE=S△ABC﹣S△CDE=9﹣x(6﹣x)=(x﹣3)2+(0≤x≤6)【点睛】第一问虽然求证平行四边形,实际考查三角形全等的基本功第二问,主要考查推理能力,把△CFD为直角三角形当做条件,来求BD的长,但是需要注意的是,写过需要先给出BD的长,来证明△CFD为直角三角形,第三问,考查面积,主要利用组合图形求面积25、(1)见解析;(2)①见解析;②【解析】

(1)由折叠的性质可得PB=PG,∠B=∠G=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论