版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省武威第九中学2024届数学八年级下册期末学业水平测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.“已知:正比例函数与反比例函数图象相交于两点,其横坐标分别是1和﹣1,求不等式的解集.”对于这道题,某同学是这样解答的:“由图象可知:当或时,,所以不等式的解集是或”.他这种解决问题的思路体现的数学思想方法是()A.数形结合 B.转化 C.类比 D.分类讨论2.如图,在Rt△ABC中,∠ACB=90˚,D,E,F分别是AB,AC,AD的中点,若AB=8,则EF的长是()A.1 B.2 C.3 D.3.在平面直角坐标系中,将正比例函数(>0)的图象向上平移一个单位长度,那么平移后的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,在平行四边形中,和的平分线交于边上一点,且,,则的长是()A.3 B.4 C.5 D.2.55.据《南昌晚报》2019年4月28日报道,“五一”期间南昌天气预报气温如下:时间4月29日4月30日5月1日5月2日5月3日最低气温18℃18℃19℃18℃19℃最高气温22℃24℃27℃22℃24℃则“五一”期间南昌天气预报气温日温差最大的时间是()A.4月29日 B.4月30日 C.5月1日 D.5月3日6.如图所示,过平行四边形ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中平行四边形AEMG的面积与平行四边形HCFM的面积的大小关系是()A. B.C. D.7.已知分式方程,去分母后得()A. B.C. D.8.如图,已知正方形ABCD的面积等于25,直线a,b,c分别过A,B,C三点,且a∥b∥c,EF⊥直线c,垂足为点F交直线a于点E,若直线a,b之间的距离为3,则EF=()A.1 B.2 C.-3 D.5-9.若在实数范围内有意义,则的取值范围是()A. B. C. D.且10.如图,直线和直线相交于点,则不等式的解集为()A. B. C. D.11.已知点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,则下列说法不正确的是()A.am=2 B.若a+b=0,则m+n=0C.若b=3a,则nm D.若a<b,则m>n12.8名学生的平均成绩是x,如果另外2名学生每人得84分,那么整个组的平均成绩是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP度数是_____度.14.某班30名学生的身高情况如下表:身高(m)1.451.481.501.531.561.60人数256854则这30名学生的身高的众数是______.15.已知y+2与x-3成正比例,且当x=0时,y=1,则当y=4时,x的值为________.16.若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.17.有一种细菌的直径约为0.000000054米,将0.000000054这个数用科学记数法表示为____.18.如图,直线l1∶y=ax与直线l2∶y=kx+b交于点P,则不等式ax>kx+b的解集为_________.三、解答题(共78分)19.(8分)市政某小组检修一条长的自来水管道,在检修了一半的长度后,提高了工作效率,每小时检修的管道长度是原计划的1.5倍,结果共用完成任务,求这个小组原计划每小时检修管道的长度.20.(8分)先化简后求值:()÷,其中x=.21.(8分)如图,矩形中,点在边上,将沿折叠,点落在边上的点处,过点作交于点,连接.(1)求证:四边形是菱形;(2)若,求四边形的面积.22.(10分)化简并求值:,其中.23.(10分)如图,已知点A(﹣2,0),点B(6,0),点C在第一象限内,且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD于点E,交OC于点E(1)求直线BD的解析式;(2)求线段OF的长;(3)求证:BF=OE.24.(10分)在数学学习中,及时对知识进行归纳和整理是提高学习效率的重要方法,善于学习的小明在学习了一次方程(组)、一元一次不等式和一次函数后,对照图形,把相关知识归纳整理如下:一次函数与方程(组)的关系:(1)一次函数的解析式就是一个二元一次方程;(2)点B的横坐标是方程kx+b=0的解;(3)点C的坐标(x,y)中x,y的值是方程组①的解.一次函数与不等式的关系:(1)函数y=kx+b的函数值y大于0时,自变量x的取值范围就是不等式kx+b>0的解集;(2)函数y=kx+b的函数值y小于0时,自变量x的取值范围就是不等式②的解集.(一)请你根据以上归纳整理的内容在下面的数字序号后写出相应的结论:①;②;(二)如果点B坐标为(2,0),C坐标为(1,3);①直接写出kx+b≥k1x+b1的解集;②求直线BC的函数解析式.25.(12分)在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图).(1)求边OA在旋转过程中所扫过的面积;(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;(3)试证明在旋转过程中,△MNO的边MN上的高为定值;(4)设△MBN的周长为p,在旋转过程中,p值是否发生变化?若发生变化,说明理由;若不发生变化,请给予证明,并求出p的值.26.按指定的方法解下列一元二次方程:(1)(配方法)(2)(公式法)
参考答案一、选择题(每题4分,共48分)1、A【解析】试题分析:根据数形结合法的定义可知.解:由正比例函数y1=kx(k>0)与反比例函数y2=(m>0)图象相交于A、B两点,其横坐标分别是1和﹣1,然后结合图象可以看出x>1或﹣1<x<0时,y1>y2,所以不等式kx>的解集是x>1或﹣1<x<0”.解决此题时将解析式与图象紧密结合,所以解决此题利用的数学思想方法叫做数形结合法.故选A.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合法是解决函数问题经常采用的一种方法,关键是要找出图象与函数解析式之间的联系.2、B【解析】
利用直角三角形斜边中线定理以及三角形的中位线定理即可解决问题.【详解】解:在Rt△ABC中,∵AD=BD=4,∴CD=AB=4,∵AF=DF,AE=EC,∴EF=CD=1.故选:B.【点睛】本题考查三角形的中位线定理、直角三角形斜边上的中线的性质等知识,解题的关键是熟练掌握三角形的中位线定理以及直角三角形斜边上的中线的性质解决问题,属于中考常考题型.3、D【解析】试题分析:将正比例函数y=kx(k>0)的图象向上平移一个单位得到y=kx+1(k>0),∵k>0,b=1>0,∴图象经过第一、二、三象限,不经过第四象限.故选D.考点:一次函数图象与几何变换.4、D【解析】
由▱ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E,易证得△ABE,△CDE是等腰三角形,△BEC是直角三角形,则可求得BC的长,继而求得答案.【详解】∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠CBE,∠DEC=∠BCE,∠ABC+∠DCB=90°,∵BE,CE分别是∠ABC和∠BCD的平分线,∴∠ABE=∠CBE=∠ABC,∠DCE=∠BCE=∠DCB,∴∠ABE=∠AEB,∠DCE=∠DEC,∠EBC+∠ECB=90°,∴AB=AE,CD=DE,∴AD=BC=2AB,∵BE=4,CE=3,∴BC=,∴AB=BC=2.5.故选D.【点睛】此题考查了平行四边形的性质、等腰三角形的判定与性质以及直角三角形的性质.注意证得△ABE,△CDE是等腰三角形,△BEC是直角三角形是关键.5、C【解析】
根据极差的公式:极差=最大值-最小值.找出所求数据中最大的值,最小值,再代入公式求值即可.【详解】4月29日的温差:22-18=44月30日的温差:24-18=65月1日的温差:27-19=85月2日的温差:22-18=45月3日的温差:24-19=5故5月1日温差最大,为8故选:C【点睛】本题考查了极差,掌握极差公式:极差=最大值-最小值是解题的关键.6、A【解析】
根据平行四边形的性质和判定得出平行四边形GBEP、GPFD,证△ABD≌△CDB,得出△ABD和△CDB的面积相等;同理得出△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,相减即可求出答案.【详解】∵四边形ABCD是平行四边形,EF∥BC,HG∥AB,∴AD=BC,AB=CD,AB∥GH∥CD,AD∥EF∥BC,∴四边形HBEM、GMFD是平行四边形,在△ABD和△CDB中;∵,∴△ABD≌△CDB(SSS),即△ABD和△CDB的面积相等;同理△BEM和△MHB的面积相等,△GMD和△FDM的面积相等,故四边形AEMG和四边形HCFM的面积相等,即.故选:A.【点睛】此题考查平行四边形的性质,全等三角形的判定与性质,解题关键在于得出△ABD≌△CDB7、A【解析】
两边都乘以最简公分母(x+2)(x-2)即可得出正确选项.【详解】解:方程两边都乘以最简公分母(x+2)(x-2),得:x(x+2)-1=(x+2)(x-2),即x(x+2)-1=x2-4,故选:A.【点睛】本题主要考查解分式方程,准确找到最简公分母是解题的关键.8、A【解析】
延长AE交BC于N点,过B点作BM⊥AN于M点,过N点作NH⊥FC于H点,在Rt△ABM和Rt△BMN中,易得cos∠BAM=cos∠MBN,即,解得BN=,从而求出CN长度,在Rt△HNC中,利用cos∠HNC=cos∠MBN=,求出NH长度,最后借助EF=NH即可.【详解】解:延长AE交BC于N点,过B点作BM⊥AN于M点,过N点作NH⊥FC于H点,因为正方形的面积为23,所以正方形的边长为3.在Rt△ABM中,AB=3,BM=3,利用勾股定理可得AM=2.∵∠BAM+∠ABM=90°,∠NBM+∠ABM=90°,∴∠MBN=∠BAM.∴cos∠BAM=cos∠MBN,即,解得BN=.∴CN=BC-BN=.∵∠HNC=∠MBN,∴cos∠HNC=cos∠MBN=.∴,解得NH=3.∵a∥c,EF⊥FC,NH⊥FC,∴EF=NH=3.故选:A.【点睛】本题考查正方形的性质、平行线间的距离、解直角三角形,解题的关键是根据题意作出辅助线,转化角和边.9、D【解析】
根据二次根式的性质和分式的意义,被开方数大于等于1,分母不等于1,就可以求解.【详解】根据二次根式有意义,分式有意义得:x+1≥1且x≠1,解得:x≥-1且x≠1.故选D.【点睛】本题考查的知识点为:分式有意义,分母不为1;二次根式的被开方数是非负数.10、C【解析】
写出直线y=kx(k≠0)在直线y=mx+n(m≠0)上方部分的x的取值范围即可.【详解】解:由图可知,不等式kx≥mx+n的解集为x≥2;故选:C.【点睛】本题考查了一次函数与一元一次不等式,此类题目,利用数形结合的思想求解是解题的关键.11、D【解析】
根据题意得:am=bn=2,将B,C选项代入可判断,根据反比例函数图象的性质可直接判断D是错误的.【详解】∵点P(a,m),Q(b,n)是反比例函数y图象上两个不同的点,∴am=bn=2,若a+b=0,则a=﹣b,∴﹣bm=bn,∴﹣m=n即m+n=0,若b=3a,∴am=3an,∴nm,故A,B,C正确,若a<0<b,则m<0,n>0,∴m<n,故D是错误的,故选D.【点睛】本题考查了反比例函数图象上点的坐标特征,关键是灵活运用反比例函数图象的性质解决问题.12、D【解析】先求这10个人的总成绩8x+2×84=8x+168,再除以10可求得平均值为:.故选D.二、填空题(每题4分,共24分)13、22.5【解析】∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=(180°-45°)=67.5°,∴∠ACP度数是67.5°-45°=22.5°14、1.1.【解析】
根据众数的定义,即出现次数最多的【详解】在这一组数据中1.1出现了8次,次数最多,故众数是1.1.故答案为1.1.【点睛】此题考查众数,难度不大15、-1【解析】
解:设y+2=k(x-1),∵x=0时,y=1,∴k(0-1)=1+2,解得:k=-1,∴y+2=-(x-1),即y=-x+1,当y=4时,则4=-x+1,解得x=-1.16、a>1且a≠3【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【详解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠3【点睛】本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.17、5.4×【解析】
绝对值<1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000054这个数用科学记数法表示为5.4×10故答案为:5.4×【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.18、x>1;【解析】
观察图象,找出直线l1∶y=ax在直线l2∶y=kx+b上方部分的x的取值范围即可.【详解】∵直线l1∶y=ax与直线l2∶y=kx+b交于点P的横坐标为1,∴不等式ax>kx+b的解集为x>1,故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式的关系,正确把握数形结合思想是解此类问题的关键.三、解答题(共78分)19、这个小组原计划每小时检修管道长度为1m.【解析】
首先设这个小组原计划每小时检修管道长度为xm,然后根据题意可列出方程,解得即可.【详解】解:设这个小组原计划每小时检修管道长度为xm.由题意,得,解得x=1.经检验:x=1是原方程的解,且符合题意.答:这个小组原计划每小时检修管道长度为1m.【点睛】此题主要考查分式方程的实际应用,关键是找出关系式,即可解题.20、2【解析】
首先对前两个式子进行同分,并对每个分式进行分解因式,乘以后面分式的倒数,并进行约分即可.【详解】解:当x=时,∴原式==,=2.【点睛】本题主要考查分式的四则运算,注意通分及约分正确即可,最终的式子保证最简形式.21、(1)详见解析;(2)【解析】
(1)根据题意可得,因此可得,又,则可得四边形是平行四边形,再根据可得四边形是菱形.(2)设,则,再根据勾股定理可得x的值,进而计算出四边形的面积.【详解】(1)证明:由题意可得,,∴,∵,∴,∴,∴,∴,∴四边形是平行四边形,又∵∴四边形是菱形;(2)∵矩形中,,∴,∴,∴,设,则,∵,∴,解得,,∴,∴四边形的面积是:.【点睛】本题主要考查菱形的判定,关键在于首先证明其是平行四边形,再证明两条临边相等即可.22、,【解析】
首先进行化简,在代入计算即可.【详解】原式当时,原式【点睛】本题主要考查根式的化简,注意根式的分母不等为0,这是必考题,必须掌握.23、(1);(1)OF=1;(3)见解析.【解析】
(1)在Rt△ABD中,通过解直角三角形可求出OD的长,进而可得出点D的坐标,再根据点B,D的坐标,利用待定系数法可求出直线BD的解析式;(1)由等边三角形的性质结合三角形内角和定理,可得出∠BAE=∠CFE=30°,进而可得出∠OAF=∠OFA=30°,再利用等角对等边可得出线段OF的长;(3)通过解含30度角的直角三角形可求出BE的长,结合BC的长可得出CE=OF=1,由OB=CO,∠BOF=∠OCE及OF=CE可证出△OBF≌△COE(SAS),再利用全等三角形的性质可得出BF=OE.【详解】(1)∵△OBC为等边三角形,∴∠ABC=60°.在Rt△ABD中,tan∠ABD=,即,∴AD=,∴点D的坐标是(0,).设BD的解析式是y=kx+b(k≠0),将B(6,0),D(0,)代入y=kx+b,得:,解得:,∴直线BD的解析式为.(1)解:∵AE⊥BC,△OBC是正三角形,∴∠BAE=∠CFE=30°,∴∠OAF=∠OFA=30°,∴OF=OA=1,即OF的长为1.(3)证明:∵AB=8,∠OBC=60°,AE⊥BC,∴BE=AB=4,∴CE=BC-BE=6-4=1,∴OF=CE.在△OBF和△COE中,,∴△OBF≌△COE(SAS),∴BF=OE.【点睛】本题考查了等边三角形、解直角三角形、待定系数法求一次函数解析式、等腰三角形的性质、三角形内角和定理以及全等三角形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次函数的解析式;(1)通过角的计算,找出∠OAF=∠OFA;(3)利用全等三角形的判定定理SAS,证出△OBF≌△COE.24、(一);kx+b<1;(二)①x≤1;②y=-3x+2【解析】
(一)①因为C点是两个函数图象的交点,因此C点坐标必为两函数解析式联立所得方程组的解;②函数y=kx+b中,当y<1时,kx+b<1,因此x的取值范围是不等式kx+b<1的解集;(二)①由图可知:在C点左侧时,直线y=kx+b的函数值要大于直线y=k1x+b1的函数值;②利用待定系数法即可求出直线BC的函数解析式.【详解】解:(一)根据题意,可得①;②kx+b<1.故答案为;kx+b<1;(二)如果点B坐标为(2,1),C坐标为(1,3);①kx+b≥k1x+b1的解集是x≤1;②∵直线BC:y=kx+b过点B(2,1),C(1,3),∴,解得,∴直线BC的函数解析式为y=-3x+2.【点睛】此题考查了一次函数与二元一次方程组及一元一次不等式之间的联系,一次函数的性质,待定系数法求一次函数解析式,利用数形结合与方程思想是解答本题的关键.25、(1)OA在旋转过程中所扫过的面积为0.5π;(1)旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=11.5度;(3)MN边上的高为1(2)在旋转正方形OABC的过程中,p值无变化.见解析.【解析】
(1)过点M作MH⊥y轴,垂足为H,如图1,易证∠MOH=25°,然后运用扇形的面积公式就可求出边OA在旋转过程中所扫过的面积.
(1)根据正方形和平行线的性质可以得到AM=CN,从而可以证到△OAM≌△OCN.进而可以得到∠AOM=∠CON,就可算出旋转角∠HOA的度数.
(3)过点O作OF⊥MN,垂足为F,延长BA交y轴于E点,如图1,易证△OAE≌△OCN,从而得到OE=ON,AE=CN,进而可以证到△OME≌△OMN,从而得到∠OME=∠OMN,然后根据角平分线的性质就可得到结论.
(2)由△OME≌△OMN(已证)可得ME=MN,从而可以证到MN=AM+CN,进而可以推出p=AB+BC=2,是定值.【详解】解:(1)过点M作MH⊥y轴,垂足为H,如图1,
∵点M在直线y=x上,
∴OH=MH.
在Rt△OHM中,
∵tan∠MOH==1,
∴∠MOH=25°.
∵A点第一次落在直线y=x上时停止旋转,
∴OA旋转了25°.
∵正方形OABC的边长为1,
∴OA=1.
∴OA在旋转过程中所扫过的面积为=0.5π.∵A点第一次落在直线y=x上时停止旋转,∴OA旋转了25度.∴OA在旋转过程中所扫过的面积为0.5π.(1)∵MN∥AC,∴∠BMN=∠BAC=25°,∠BNM=∠BCA=25度.∴∠BMN=∠BNM.BM=BN.又∵BA=BC,AM=CN.又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.∴∠AOM=∠CON.∴∠AOM=1/1(90°-25°)=11.5度.∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为25°-11.5°=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班社会课听评课记录
- 搭石公听评课记录
- 《货币概述曹龙骐版》课件
- 《方案介绍提纲》课件
- 《做好垃圾分类》课件
- 《质量QC小组》课件
- 《责任主体》课件
- 《施工组织设计实例》课件
- 《流感诊疗指南》课件
- 《测井系列讲座》课件
- 护士长的管理能力
- 2025年中国蛋糕行业市场规模及发展前景研究报告(智研咨询发布)
- 近十年《本草纲目》研究述评
- 【MOOC】中国智慧-华东师范大学 中国大学慕课MOOC答案
- 大学美育(同济大学版)学习通超星期末考试答案章节答案2024年
- 安徽省江南十校2023-2024学年高一生物上学期分科诊断摸底联考试题
- 高教版【中职专用】《中国特色社会主义》期末试卷+答案
- 宣讲《铸牢中华民族共同体意识》全文课件
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 国开2024年《钢结构(本)》阶段性学习测验1-4答案
- 10000中国普通人名大全
评论
0/150
提交评论