2024届黑龙江大庆市三站中学八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
2024届黑龙江大庆市三站中学八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
2024届黑龙江大庆市三站中学八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
2024届黑龙江大庆市三站中学八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
2024届黑龙江大庆市三站中学八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江大庆市三站中学八年级数学第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,在正方形ABCD中,点E,F分别在边AB,BC上,AF=DE,AF和DE相交于点G,观察图形,与∠AED相等的角有()A.4个 B.3个 C.2个 D.1个2.根据天气预报,2018年6月20日双流区最高气温是,最低气温是,则双流区气温的变化范围是()A. B. C. D.3.若分式x2x-1□xA.+ B.— C.—或÷ D.+或×4.点关于原点的对称点的坐标为()A. B. C. D.5.若一次函数y=(3﹣k)x﹣k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36.如图,在4×4的正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点均在格点上,则该三角形最长边的长为()A. B.3 C. D.57.下列约分计算结果正确的是()A. B. C. D.8.如图,在▱ABCD中,点E为AB的中点,F为BC上任意一点,把△BEF沿直线EF翻折,点B的对应点B′落在对角线AC上,则与∠FEB一定相等的角(不含∠FEB)有()A.2个 B.3个 C.4个 D.5个9.若二次根式有意义,则x的取值范围是()A.x≤﹣ B.x≥﹣ C.x≥ D.x≤10.下列命题中,假命题是()A.对角线互相平分的四边形是平行四边形B.对角线互相平分且相等的四边形是矩形C.对角线互相垂直平分的四边形是菱形D.对角线互相垂直且相等的四边形是正方形二、填空题(每小题3分,共24分)11.如图,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=5,S2=6,则AB的长为_____.12.如图,为的中位线,点在上,且为直角,若,,则的长为_____.13.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE//AD,若AC=2,CE=4,则四边形ACEB的周长为▲.14.在一次捐款活动中,某班第一小组8名同学捐款的金额单位:元如下表所示:这8名同学捐款的平均金额为______元金额元56710人数232115.如图,在中,,,,过点作,垂足为,则的长度是______.16.已知:一次函数的图像在直角坐标系中如图所示,则______0(填“>”,“<”或“=”)17.勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是把图1放入长方形内得到的,,AB=3,AC=4,点D,E,F,G,H,I都在长方形KLMJ的边上,则长方形KLMJ的面积为___.18.已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.三、解答题(共66分)19.(10分)已知与成正比例,且时.求:与的函数解析式.20.(6分)如图,已知四边形为正方形,点为对角线上的一动点,连接,过点作,交于点,以为邻边作矩形,连接.(1)求证:矩形是正方形;(2)判断与之间的数量关系,并给出证明.21.(6分)如图,在△ABC中,AB=AC,D为BC中点,AE∥BD,且AE=BD.(1)求证:四边形AEBD是矩形;(2)连接CE交AB于点F,若BE=2,AE=2,求EF的长.22.(8分)已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1.x2.(1)求实数k的取值范围;(2)若(x1+1)(x2+1)=2,试求k的值.23.(8分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由24.(8分)某中学初二年级抽取部分学生进行跳绳测试,并规定:每分钟跳次以下为不及格;每分钟跳次的为及格;每分钟跳次的为中等;每分钟跳次的为良好;每分钟跳次及以上的为优秀.测试结果整理绘制成如下不完整的统计图.请根据图中信息,解答下列问题:(1)参加这次跳绳测试的共有人;(2)补全条形统计图;(3)在扇形统计图中,“中等”部分所对应的圆心角的度数是;(4)如果该校初二年级的总人数是人,根据此统计数据,请你估算该校初二年级跳绳成绩为“优秀”的人数.25.(10分)如图,平行四边形ABCD中,点E、F分别是AD、BC的中点26.(10分)已知:如图,平面直角坐标系中,,,点C是x轴上一点,点D为OC的中点.(1)求证:BD∥AC;(2)若点C在x轴正半轴上,且BD与AC的距离等于2,求点C的坐标;(3)如果于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

根据正方形的性质证明△DAE≌△ABF,即可进行判断.【详解】解:∵四边形ABCD是正方形,∴∠DAB=∠B=90°,AD=AB,∵AF=DE,∴△DAE≌△ABF(HL),∴∠ADE=∠BAF,∠AED=∠AFB,∵∠DAG+∠BAF=90°,∠GDA+∠AED=90°,∴∠DAG=∠AED,∵∠ADE+∠CDG=90°,∴∠CDE=∠AED.故选:B.【点睛】此题主要考查正方形的性质,解题的关键是熟知全等三角形的判定与性质.2、D【解析】

根据题意列出不等式即可求出答案.【详解】解:由于最高气温是30℃,最低气温是23℃,∴23≤t≤30,故选:D.【点睛】本题考查不等式,解题的关键是正确理解不等式的定义,本题属于基础题型.3、C【解析】

依次计算+、-、×、÷,再进行判断.【详解】当□为“-”时,x2当□为“+”时,x2当□为“×”时,x2当□为“÷”时,x2所以结果为x的有—或÷.故选:C.【点睛】考查了分式的加、减、乘、除运算,解题关键是熟记其运算法则.4、A【解析】

根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:根据中心对称的性质,可知:点P(-3,2)关于原点O中心对称的点的坐标为(3,-2).

故选:A.【点睛】本题考查关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.5、A【解析】试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像的性质:可知k>0,b>0,在一二三象限;k>0,b<0,在一三四象限;k<0,b>0,在一二四象限;k<0,b<0,在二三四象限.因此由图象经过第二、三、四象限,可判断得3-k<0,-k<0,解之得k>0,k>3,即k>3.故选A考点:一次函数的图像与性质6、B【解析】

根据风格特点利用勾股定理求出三边长,比较即可得.【详解】AB=,BC=,AC=,<<3,所以中长边的长为3,故选B.【点睛】本题考查了勾股定理的应用,熟练掌握网格的结构特征以及勾股定理的内容是解题的关键.7、C【解析】

根据约分的定义逐项分析即可,根据分式的基本性质把分子、分母中除1以外的公因式约去,叫做分式的约分.【详解】A.的分子与分母没有公因式,不能约分,故不正确;B.的分子与分母没有公因式,不能约分,故不正确;C.,故正确;D.,故不正确;故选C.【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键.8、C【解析】

由翻折的性质可知,EB=EB',由E为AB的中点,得到EA=EB',根据三角形外角等于不相邻的两内角之和,找到与∠FEB相等的角,再根据AB∥CD,也可得到∠FEB=∠ACD.【详解】解:由翻折的性质可知:EB=EB',∠FEB=∠FEB';∵E为AB的中点,∴AE=BE=EB',∴∠EAB'=∠EB'A,∵∠BEB'=∠EAB'+∠EB'A,∴2∠FEB=2∠EAB=2∠EB'A,∴∠FEB=∠EAB=∠EB'A,∵AB∥CD,∴∠B'AE=∠ACD,∴∠FEB=∠ACD,∴与∠FEB相等的角有∠FEB',∠EAB',∠EB'A,∠ACD,∴故选C.【点睛】此题考查翻折的性质,EA=EB'是正确解答此题的关键9、C【解析】【分析】根据二次根式有意义的条件——被开方数为非负数进行求解即可得.【详解】由题意得:2x-1≥0,解得:x≥,故选C.【点睛】本题考查了二次根式有意义的条件,熟知被开方数为非负数时二次根式有意义是解题的关键.10、D【解析】

根据平行四边形的判定方法可知A是真命题,根据矩形的判定方法可知B是真命题,根据菱形的判定方法可知C是真命题,根据对角线互相垂直平分且相等的四边形是正方形,可知D是假命题.【详解】A.对角线互相平分的四边形是平行四边形,是真命题;B.对角线互相平分且相等的四边形是矩形,是真命题;C.对角线互相垂直平分的四边形是菱形,是真命题;D.对角线互相垂直且相等的四边形是正方形,是假命题;故选D.【点睛】本题主要考查了命题与定理,解题时注意:对角线互相垂直平分且相等的四边形是正方形,对角线互相垂直且相等的四边形可能是等腰梯形或筝形.二、填空题(每小题3分,共24分)11、【解析】

根据勾股定理得出S2+S1=S3,求出S3,即可求出AB.【详解】解:∵由勾股定理得:AC2+BC2=AB2,∴S2+S1=S3,∵S1=5,S2=6,∴S3=11,∴AB=,故答案为:.【点睛】本题考查了勾股定理和正方形的性质,能求出S3的值是解此题的关键.12、1cm.【解析】

根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.【详解】∵DE为△ABC的中位线,∴DE=BC=4(cm),∵∠AFC为直角,E为AC的中点,∴FE=AC=3(cm),∴DF=DE﹣FE=1(cm),故答案为1cm.【点睛】本题考查的是三角形中位线定理,直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.13、10+.【解析】先证明四边形ACED是平行四边形,可得DE=AC=1.由勾股定理和中线的定义可求AB和EB的长,从而求出四边形ACEB的周长.∵∠ACB=90°,DE⊥BC,∴AC∥DE.又∵CE∥AD,∴四边形ACED是平行四边形.∴DE=AC=1.在Rt△CDE中,DE=1,CE=2,由勾股定理得.∵D是BC的中点,∴BC=1CD=2.在△ABC中,∠ACB=90°,由勾股定理得.∵D是BC的中点,DE⊥BC,∴EB=EC=2.∴四边形ACEB的周长=AC+CE+EB+BA=10+.14、6.5【解析】

根据加权平均数的计算公式用捐款的总钱数除以8即可得出答案.【详解】这8名同学捐款的平均金额为元,故答案为:.【点睛】此题考查了加权平均数,掌握加权平均数的计算公式是解题的关键,属于基础题.15、1【解析】

由已知可得Rt△ABC是等腰直角三角形,且,得出CD=AD=BD=AB=1.【详解】∵CA=CB.∠ACB=90°,CD⊥AB,∴AD=DB,∴CD=AB=1,故答案为1.【点睛】本题考查了等腰直角三角形的性质,直角三角形斜边中线的性质,解题的关键是灵活运用等腰直角三角形的性质求边的关系.16、>【解析】

根据图像与y轴的交点可知b<0,根据y随x的增大而减小可知k<0,从而根据乘法法则可知kb>0.【详解】∵图像与y轴的交点在负半轴上,∴b<0,∵y随x的增大而减小,∴k<0,∴kb>0.故答案为>.【点睛】本题考查了一次函数的图像与性质,对于一次函数y=kx+b(k为常数,k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.当b>0,图像与y轴的正半轴相交,当b<0,图像与y轴的负半轴相交.17、110【解析】

延长AB交KF于点O,延长AC交GM于点P,可得四边形AOLP是正方形,然后求出正方形的边长,再求出矩形KLMJ的长与宽,然后根据矩形的面积公式列式计算即可得解.【详解】如图,延长AB交KF于点O,延长AC交GM于点P,则四边形OALP是矩形.

∵∠CBF=90°,

∴∠ABC+∠OBF=90°,

又∵直角△ABC中,∠ABC+∠ACB=90°,

∴∠OBF=∠ACB,

在△OBF和△ACB中,

∴△OBF≌△ACB(AAS),

∴AC=OB,

同理:△ACB≌△PGC,

∴PC=AB,

∴OA=AP,

所以,矩形AOLP是正方形,

边长AO=AB+AC=3+4=7,

所以,KL=3+7=10,LM=4+7=11,

因此,矩形KLMJ的面积为10×11=110.【点睛】本题考查勾股定理,解题的关键是读懂题意,掌握勾股定理.18、,【解析】

根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.【详解】a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3,a5,a4,a3,a1,a1,处在第3、4位的数据的平均数为,故答案为:,.【点睛】考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.三、解答题(共66分)19、.【解析】

根据正比例函数的定义设该函数的解析式为(),将x,y的值代入求出k的值即可得出答案.【详解】解:设该函数的解析式为(),∵当时,,∴解得∴所求函数的解析式为.【点睛】本题考查的知识点是正比例函数的定义,比较简单,属于基础题目.20、(1)详见解析;(2),理由详见解析.【解析】

作出辅助线,得到EN=EM,然后判断∠DEN=∠FEM,得到△DEM≌△FEM,则有DE=EF即可;根据四边形的性质即全等三角形的性质即可证明,即可得在中,则【详解】证明:(1)过作于点,过作于点,如图所示:正方形,,,且,四边形为正方形四边形是矩形,,.,又,在和中,,,矩形为正方形,(2)矩形为正方形,,四边形是正方形,,,,在和中,,,,在中,,【点睛】本题考查正方形的判定与性质,解题关键在于证明.21、(1)见解析;(2)EF=.【解析】

(1)根据有一个角是直角的平行四边形是矩形即可判断;(2)利用勾股定理求出EC,证明△AEF∽△BCF,推出,由此即可解决问题.【详解】(1)证明:∵AE∥BD,AE=BD,∴四边形AEBD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴∠ADB=90°,∴四边形AEBD是矩形;(2)解:∵四边形AEBD是矩形,∴∠AEB=90°,∵AE=2,BE=2,∴BC=4,∴EC=,∵AE∥BC,∴△AEF∽△BCF,∴,∴EF=EC=.【点睛】本题考查了矩形的判定和性质,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22、(2);(2)k=-3.【解析】

(2)根据一元二次方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围;

(2)根据根与系数可得出x2+x2=2(k-2),x2x2=k2,结合(x2+2)(x2+2)=2,即可得出关于k的一元二次方程,解之即可得出k值,结合(2)的结论即可得出结论.【详解】解:(2)∵关于x的方程x2-2(k-2)x+k2=0有两个实数根,

∴△=[-2(k-2)]2-4×2×k2≥0,

∴k≤,

∴实数k的取值范围为k≤.

(2)∵方程x2-2(k-2)x+k2=0的两根为x2和x2,

∴x2+x2=2(k-2),x2x2=k2.

∵(x2+2)(x2+2)=2,即x2x2+(x2+x2)+2=2,

∴k2+2(k-2)+2=2,

解得:k2=-3,k2=2.

∵k≤,

∴k=-3.【点睛】本题考查了根的判别式以及根与系数关系,解题的关键是:(2)牢记“当△≥0时,方程有实数根”;(2)根据根与系数关系结合(x2+2)(x2+2)=2,找出关于k的一元二次方程.23、(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.【解析】

(1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量,结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;

(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设购买A型号足球x个,B型号足球y个,依题意,得解之得答:该校购买A型号足球60个,B型号足球40个;(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据题意得w=200m+250(100-m)=-50m+25000又∵m≤9(100-m);∴0<m≤90或(m≤90)∵K=-50<0∴w随m的増大而減小∴当m=90肘w最小∴最省钱的购买方案为:A型足球90个,B型足球10个.故答案为:(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.【点睛】本题考查二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.24、(1)50;(2)见解析;(3)72°;(4)96人.【解析】

(1)利用条形统计图以及扇形统计图得出良好的人数和所占比例,即可得出全班人数;(2)利用(1)中所求,结合条形统计图得出优秀的人数,进而求出答案;(3)利用中等的人数,进而得出“中等”部分所对应的圆心角的度数;(4)利用样本估计总体进而利用“优秀”所占比例求出即可.【详解】(1)由扇形统计图和条形统计图可得:参加这次跳绳测试的共有:20÷40%=50(人);故答案为:50;(2)由(1)的优秀的人数为:50−3−7−10−20=10人,(3)“中等”部分所对应的圆心角的度数是:×360°=72°,故答案为:72°;(4)全年级优秀人数为:(人).【点睛】此题主要考查了扇形统计图以及条形统计图和利用样本估计总体等知识,利用已知图形得出正确信息是解题关键.25、见解析【解析】

根据平行四边形的性质和已知可证AE=CF,∠BAE=∠DCF,AB=CD,故根据SAS可证△ABE≌△DCF.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论