2024届湖北省大冶市金湖街办数学八年级下册期末学业质量监测试题含解析_第1页
2024届湖北省大冶市金湖街办数学八年级下册期末学业质量监测试题含解析_第2页
2024届湖北省大冶市金湖街办数学八年级下册期末学业质量监测试题含解析_第3页
2024届湖北省大冶市金湖街办数学八年级下册期末学业质量监测试题含解析_第4页
2024届湖北省大冶市金湖街办数学八年级下册期末学业质量监测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省大冶市金湖街办数学八年级下册期末学业质量监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,中,对角线、相交于点O,交于点E,连接,若的周长为28,则的周长为()A.28 B.24 C.21 D.142.下列各组数作为三角形的边长,其中不能构成直角三角形的是()A.6,8,10B.5,12,13C.9,40,41D.7,9,123.下列二次根式是最简二次根式的是(

)A. B. C. D.4.一个正多边形的每一个外角都等于45°,则这个多边形的边数为()A.4 B.6 C.8 D.105.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A. B. C.4 D.56.下列函数①y=5x;②y=﹣2x﹣1;③y=;④y=x﹣6;⑤y=x2﹣1其中,是一次函数的有()A.1个 B.2个 C.3个 D.4个7.方程x2﹣9=0的解是()A.x=3 B.x=9 C.x=±3 D.x=±98.矩形的长为x,宽为y,面积为9,则y与x之间的函数关系式用图象表示大致为()A. B. C. D.9.点()在函数y=2x-1的图象上.A.(1,3) B.(−2.5,4) C.(−1,0) D.(3,5)10.如图,将绕点顺时针旋转得到.若点在同一条直线上,则的度数是()A. B. C. D.11.给出下列几组数:①4,5,6;②8,15,16;③n2-1,2n,n2+1;④m2-n2,2mn,m2+n2(m>n>0).其中—定能组成直角三角形三边长的是().A.①②B.③④C.①③④D.④12.下列式子是最简二次根式的是()A. B. C. D.二、填空题(每题4分,共24分)13.观察分析下列数据:0,,,-3,,,,…,根据数据排列的规律得到第10个数据应是__________.14.如图,平面直角坐标系中,已知直线上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转900至线段PD,过点D作直线AB⊥x轴.垂足为B,直线AB与直线交于点A,且BD=2AD,连接CD,直线CD与直线交于点Q,则点Q的坐标为_______.15.在菱形ABCD中,E为AB的中点,OE=3,则菱形ABCD的周长为.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.17.已知矩形的长a=,宽b=,则这个矩形的面积是_____.18.已知关于x的方程m2x2+2(m﹣1)x+1=0有实数根,则满足条件的最大整数解m是______.三、解答题(共78分)19.(8分)如图,在△ABC中,∠B=90°,AB=6cm,BC=8cm,动点P从点A开始沿AB边向B以1cm/s的速度移动(不与点B重合);动点Q从B点开始沿BC边向点C以2cm/s的速度移动(不与点C重合).如果P、Q分别从A、B同时出发,出发多少秒后,四边形APQC的面积为16cm2?20.(8分)如图,在6×6的网格中,每个小正方形的边长为1,请按要求画出格点四边形(四个顶点都在格点上的四边形叫格点四边形).(1)在图1中,画出一个非特殊的平行四边形,使其周长为整数.(2)在图2中,画出一个特殊平行四边形,使其面积为6且对角线交点在格点上.注:图1,图2在答题纸上.21.(8分)如图,函数的图象与函数的图象交于点,.(1)求函数的表达式;(2)观察图象,直接写出不等式的解集;(3)若点是轴上的动点,当周长最小时,求点的坐标.22.(10分)根据下列条件分别确定函数y=kx+b的解析式:(1)y与x成正比例,当x=5时,y=6;(2)直线y=kx+b经过点(3,6)与点(2,-4).23.(10分)为了绿化环境,某中学八年级(3班)同学都积极参加了植树活动,下面是今年3月份该班同学植树情况的扇形统计图和不完整的条形统计图:请根据以上统计图中的信息解答下列问题.(1)植树3株的人数为;(2)扇形统计图中植树为1株的扇形圆心角的度数为;(3)该班同学植树株数的中位数是(4)小明以下方法计算出该班同学平均植树的株数是:(1+2+3+4+5)÷5=3(株),根据你所学的统计知识判断小明的计算是否正确,若不正确,请写出正确的算式,并计算出结果24.(10分)先化简,再求值:,其中x=1.25.(12分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?26.给出三个多项式:,请选择两个多项式进行加法运算,并把结果分解因式(写出两种情况).

参考答案一、选择题(每题4分,共48分)1、D【解析】

根据平行四边形的性质和中垂线定理,再结合题意进行计算,即可得到答案.【详解】解:∵四边形是平行四边形,∴,,,∵平行四边形的周长为28,∴∵,∴是线段的中垂线,∴,∴的周长,故选:D.【点睛】本题考查平行四边形的性质和中垂线定理,解题的关键是熟练掌握平行四边形的性质和中垂线定理.2、D【解析】试题分析:A、∵62+82=102考点:勾股数.3、C【解析】【分析】最简二次根式:①被开方数不含有分母(小数);②被开方数中不含有可以开方开得出的因数或因式;【详解】A.,被开方数含有分母,本选项不能选;B.,被开方数中含有可以开方开得出的因数,本选项不能选;C.是最简二次根式;D.,被开方数中含有可以开方开得出的因数,本选项不能选.故选:C【点睛】本题考核知识点:最简二次根式.解题关键点:理解最简二次根式的条件.4、C【解析】因为多边形的外角和为360°,所以这个多边形的边数为:360÷45=8,故选C.5、C【解析】

设BQ=x,则由折叠的性质可得DQ=AQ=9-x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程,解方程即可求解.【详解】设BQ=x,由折叠的性质可得DQ=AQ=9﹣x,∵D是BC的中点,∴BD=3,在Rt△BQD中,x2+32=(9﹣x)2,解得:x=1.故线段BQ的长为1.故选:C.【点睛】此题考查了翻折变换(折叠问题),折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强.6、C【解析】

直接利用一次函数的定义:一般地:形如(,、是常数)的函数,进而判断得出答案.【详解】①;②;③;④;⑤其中,是一次函数的有:①;②;④共3个.故选:.【点睛】此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.7、C【解析】试题分析:首先把﹣9移到方程右边,再两边直接开平方即可.解:移项得;x2=9,两边直接开平方得:x=±3,故选C.考点:解一元二次方程-直接开平方法.8、C【解析】由题意得函数关系式为,所以该函数为反比例函数.B、C选项为反比例函数的图象,再依据其自变量的取值范围为x>0确定选项为C.9、D【解析】

将各点坐标代入函数y=2x−1,依据函数解析式是否成立即可得到结论.【详解】解:A.当时,,故不在函数的图象上.B.当时,,故不在函数的图象上.C.当时,,故不在函数的图象上.D.当时,,故在函数的图象上.故选:D.【点睛】本题主要考查了一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.10、B【解析】

用旋转的性质可知△ACE是等腰直角三角形,由此即可解决问题.【详解】解:由题意:A,D,E共线,

由旋转可得:CA=CE,∠ACE=90°,

∴∠EAC=∠E=45°,

故选:B.【点睛】本题考查旋转变换,等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.11、D【解析】①42+52≠62,∴不能组成直角三角形;②82+152≠162,∴不能组成直角三角形;③当n=1时,三边长为:0、2、2,不能组成直角三角形;④(m2-n2)2+(2mn)2=(m2+n2)2,且m>n>0,∴能组成直角三角形.故选D.点睛:本题关键在于勾股定理逆定理的运用.12、A【解析】

利用最简二次根式的定义判断即可【详解】解:A.是最简二次根式;B.不是最简二次根式;C.不是最简二次根式;D.不是最简二次根式。故选:A【点睛】本题考查的是最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.二、填空题(每题4分,共24分)13、1【解析】

通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为:1.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.14、【解析】

如图,过点P作EF∥x轴,交y轴与点E,交AB于点F,则易证△CEP≌△PFD(ASA),∴EP=DF,∵P(1,1),∴BF=DF=1,BD=2,∵BD=2AD,∴BA=3∵点A在直线上,∴点A的坐标为(3,3),∴点D的坐标为(3,2),∴点C的坐标为(0,3),设直线CD的解析式为,则解得:∴直线CD的解析式为,联立可得∴点Q的坐标为.15、1.【解析】试题分析:根据菱形的对角线互相平分可得OB=OD,然后判断出OE是△ABD的中位线,再根据三角形的中位线等于第三边的一半求出AD,然后根据菱形的周长进行计算即可得解.解:在菱形ABCD中,OB=OD,∵E为AB的中点,∴OE是△ABD的中位线,∵OE=3,∴AD=2OE=2×3=6,∴菱形ABCD的周长为4×6=1.故答案为1.考点:菱形的性质.16、90分.【解析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.17、1【解析】

根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.【详解】矩形的面积=ab=×=×1××3=1,故答案为:1.【点睛】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.18、1【解析】

分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.【详解】解:当m=1时,原方程为2x+1=1,解得:x=﹣,∴m=1符合题意;当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,解得:m≤且m≠1.综上所述:m≤.故答案为:1.【点睛】本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.三、解答题(共78分)19、1【解析】

根据题意表示出四边形APQC的面积,进而得出方程求出答案.【详解】解:设t秒后,四边形APQC的面积为16cm1,

由题意得:S△ABC=×6×8=14(cm1),BP=6-t,BQ=1t,

∴14-•1t(6-t)=16,

解得:t1=1,t1=4,

当t=4时,BQ=1×4=8,

∵Q不与点C重合,

∴t=4不合题意舍去,

所以1秒后,四边形APQC的面积为16cm1.【点睛】此题主要考查了一元二次方程的应用,正确得出等量关系列出方程是解题关键.20、(1)详见解析;(2)详见解析.【解析】

(1)利用勾股定理得出符合题意的四边形;(2)利用平行四边形的面积求法得出符合题意的答案.【详解】(1)如图1,平行四边形ABCD即为所求图1(2)如图2,菱形ABCD即为所求图2【点睛】此题主要考查了应用设计与作图以及勾股定理确定线段长度,正确借助网格得出是解题关键.21、(1);(2)或;(3)点的坐标为.【解析】

(1)先把A(1,a),B(b,2)分别代入y=-2x+8中求出a、b的值得到A(1,6),B(3,2),然后把A点坐标代入中得到k的值,从而得到反比例函数解析式;

(2)写出一次函数图象在反比例函数图像上方所对应的自变量的范围即可;

(3)作点A关于y轴的对称点A′,连接BA′交y轴于P,如图,则A′(-1,6),根据两点之间线段最短判断此时PA+PB的值最小,△ABP周长最小,然后利用待定系数法求出直线A′B的解析式,从而得到点P的坐标.【详解】解:(1)把,分别代入得,,解得,∴,;把代入得,∴反比例函数解析式为;(2)不等式的解集为或;(3)作点关于轴的对称点,连接交轴于,如图,则,∵,∴此时的值最小,周长最小,设直线的解析式为,把,代入得,解得,∴直线的解析式为,∴点的坐标为.【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22、(1);(2).【解析】

(1)先根据正比例函数的定义可得,再利用待定系数法即可得;(2)直接利用待定系数法即可得.【详解】(1)y与x成正比例又当时,解得则;(2)由题意,将点代入得:解得则.【点睛】本题考查了利用待定系数法求正比例函数和一次函数的解析,掌握待定系数法是解题关键.23、(1)12;(2)72°;(3)2;(1)小明的计算不正确,2.1.【解析】

(1)根据植树2株的人数及其所占的百分比计算出总人数,然后分别减去植树1株,2株,1株,5株的人数即可得到植树3株的人数;(2)用360°乘以植树1株的人数所占的百分比即可得;(3)根据中位数的定义可先计算植树的总人数,然后写出即可;(1)根据平均数的定义判断计算即可.【详解】解:(1)植树3株的人数为:20÷10%﹣10﹣20﹣6﹣2=12;(2)扇形统计图中植

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论