版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届甘肃天水甘谷一中高三压轴卷数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.2.已知函数,则()A.1 B.2 C.3 D.43.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A. B. C. D.4.已知抛物线,过抛物线上两点分别作抛物线的两条切线为两切线的交点为坐标原点若,则直线与的斜率之积为()A. B. C. D.5.阅读下侧程序框图,为使输出的数据为31,则①处应填的数字为A.4 B.5 C.6 D.76.已知函数,若函数的极大值点从小到大依次记为,并记相应的极大值为,则的值为()A. B. C. D.7.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是18.已知复数,其中,,是虚数单位,则()A. B. C. D.9.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.410.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.11.已知平面向量满足与的夹角为,且,则实数的值为()A. B. C. D.12.已知x,y满足不等式组,则点所在区域的面积是()A.1 B.2 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,己知半圆的直径,点是弦(包含端点,)上的动点,点在弧上.若是等边三角形,且满足,则的最小值为___________.14.甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,则“甲、乙两人恰好在同一企业”的概率为_________.15.设,分别是椭圆C:()的左、右焦点,直线l过交椭圆C于A,B两点,交y轴于E点,若满足,且,则椭圆C的离心率为______.16.的展开式中,若的奇数次幂的项的系数之和为32,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知为椭圆的左、右焦点,离心率为,点在椭圆上.(1)求椭圆的方程;(2)过的直线分别交椭圆于和,且,问是否存在常数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.18.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.19.(12分)在底面为菱形的四棱柱中,平面.(1)证明:平面;(2)求二面角的正弦值.20.(12分)已知椭圆的离心率为,点在椭圆上.(Ⅰ)求椭圆的标准方程;(Ⅱ)设直线交椭圆于两点,线段的中点在直线上,求证:线段的中垂线恒过定点.21.(12分)已知椭圆:的离心率为,直线:与以原点为圆心,以椭圆的短半轴长为半径的圆相切.为左顶点,过点的直线交椭圆于,两点,直线,分别交直线于,两点.(1)求椭圆的方程;(2)以线段为直径的圆是否过定点?若是,写出所有定点的坐标;若不是,请说明理由.22.(10分)如图,已知椭圆的右焦点为,,为椭圆上的两个动点,周长的最大值为8.(Ⅰ)求椭圆的标准方程;(Ⅱ)直线经过,交椭圆于点,,直线与直线的倾斜角互补,且交椭圆于点,,,求证:直线与直线的交点在定直线上.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.2、C【解析】
结合分段函数的解析式,先求出,进而可求出.【详解】由题意可得,则.故选:C.【点睛】本题考查了求函数的值,考查了分段函数的性质,考查运算求解能力,属于基础题.3、C【解析】令圆的半径为1,则,故选C.4、A【解析】
设出A,B的坐标,利用导数求出过A,B的切线的斜率,结合,可得x1x2=﹣1.再写出OA,OB所在直线的斜率,作积得答案.【详解】解:设A(),B(),由抛物线C:x2=1y,得,则y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故选:A.点睛:(1)本题主要考查抛物线的简单几何性质,考查直线和抛物线的位置关系,意在考查学生对这些基础知识的掌握能力和分析推理能力.(2)解答本题的关键是解题的思路,由于与切线有关,所以一般先设切点,先设A,B,,再求切线PA,PB方程,求点P坐标,再根据得到最后求直线与的斜率之积.如果先设点P的坐标,计算量就大一些.5、B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:Si是否继续循环循环前11/第一圈32是第二圈73是第三圈154是第四圈315否故最后当i<5时退出,故选B.6、C【解析】
对此分段函数的第一部分进行求导分析可知,当时有极大值,而后一部分是前一部分的定义域的循环,而值域则是每一次前面两个单位长度定义域的值域的2倍,故此得到极大值点的通项公式,且相应极大值,分组求和即得【详解】当时,,显然当时有,,∴经单调性分析知为的第一个极值点又∵时,∴,,,…,均为其极值点∵函数不能在端点处取得极值∴,,∴对应极值,,∴故选:C【点睛】本题考查基本函数极值的求解,从函数表达式中抽离出相应的等差数列和等比数列,最后分组求和,要求学生对数列和函数的熟悉程度高,为中档题7、A【解析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【点睛】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.8、D【解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.9、C【解析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【点睛】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.10、D【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.11、D【解析】
由已知可得,结合向量数量积的运算律,建立方程,求解即可.【详解】依题意得由,得即,解得.故选:.【点睛】本题考查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.12、C【解析】
画出不等式表示的平面区域,计算面积即可.【详解】不等式表示的平面区域如图:直线的斜率为,直线的斜率为,所以两直线垂直,故为直角三角形,易得,,,,所以阴影部分面积.故选:C.【点睛】本题考查不等式组表示的平面区域面积的求法,考查数形结合思想和运算能力,属于常考题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解析】
建系,设,表示出点坐标,则,根据的范围得出答案.【详解】解:以为原点建立平面坐标系如图所示:则,,,,设,则,,,,,,,显然当取得最大值4时,取得最小值1.故答案为:1.【点睛】本题考查了平面向量的数量积运算,坐标运算,属于中档题.14、【解析】
求出所有可能,找出符合可能的情况,代入概率计算公式.【详解】解:甲、乙、丙、丁4名大学生参加两个企业的实习,每个企业两人,共有种,甲乙在同一个公司有两种可能,故概率为,故答案为.【点睛】本题考查古典概型及其概率计算公式,属于基础题15、【解析】
采用数形结合,计算以及,然后根据椭圆的定义可得,并使用余弦定理以及,可得结果.【详解】如图由,所以由,所以又,则所以所以化简可得:则故答案为:【点睛】本题考查椭圆的定义以及余弦定理的使用,关键在于根据角度求出线段的长度,考查分析能力以及计算能力,属中档题.16、【解析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在,.【解析】
(1)由条件建立关于的方程组,可求得,得出椭圆的方程;(2)①当直线的斜率不存在时,可求得,求得,②当直线的斜率存在且不为0时,设联立直线与椭圆的方程,求出线段,再由得出线段,根据等差中项可求得,得出结论.【详解】(1)由条件得,所以椭圆的方程为:;(2),①当直线的斜率不存在时,,此时,②当直线的斜率存在且不为0时,设,联立消元得,设,,直线的斜率为,同理可得,所以,综合①②,存在常数,使得成等差数列.【点睛】本题考查利用椭圆的离心率求椭圆的标准方程,直线与椭圆的位置关系中的弦长公式的相关问题,当两直线的斜率具有关系时,可能通过斜率的代换得出另一条线段的弦长,属于中档题.18、(1),函数的单调递增区间为;(2).【解析】
(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么【点睛】本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.19、(1)证明见解析;(2)【解析】
(1)由已知可证,即可证明结论;(2)根据已知可证平面,建立空间直角坐标系,求出坐标,进而求出平面和平面的法向量坐标,由空间向量的二面角公式,即可求解.【详解】方法一:(1)依题意,且∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面.(2)∵平面,∴,∵且为的中点,∴,∵平面且,∴平面,以为原点,分别以为轴、轴、轴的正方向,建立如图所示的空间直角坐标系,则,,,,∴设平面的法向量为,则,∴,取,则.设平面的法向量为,则,∴,取,则.∴,设二面角的平面角为,则,∴二面角的正弦值为.方法二:(1)证明:连接交于点,因为四边形为平行四边形,所以为中点,又因为四边形为菱形,所以为中点,∴在中,且,∵平面,平面,∴平面(2)略,同方法一.【点睛】本题主要考查线面平行的证明,考查空间向量法求面面角,意在考查直观想象、逻辑推理与数学运算的数学核心素养,属于中档题.20、(Ⅰ);(Ⅱ)详见解析.【解析】
(Ⅰ)把点代入椭圆方程,结合离心率得到关于的方程,解方程即可;(Ⅱ)联立直线与椭圆方程得到关于的一元二次方程,利用韦达定理和中垂线的定义求出线段的中垂线方程即可证明.【详解】(Ⅰ)由已知椭圆过点得,,又,得,所以,即椭圆方程为.(Ⅱ)证明:由,得,由,得,由韦达定理可得,,设的中点为,得,即,,的中垂线方程为,即,故得中垂线恒过点.【点睛】本题考查椭圆的标准方程及其几何性质、直线与椭圆的位置关系及椭圆中的定值问题;考查运算求解能力和知识的综合运用能力;正确
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025私人买卖购房合同
- 2025大厦综合布线施工合同
- 2025农民资金互助社借款合同范本
- 2025车辆运输合同模板
- 深圳市房地产买卖合同
- 委托施工安装合同范例
- 仪器校准服务合同范例
- 打地机用工合同范例
- 土鳖养殖合同范例
- 度货物购销合同范例
- 人教版(2024版)七年级上册英语期末模拟测试卷 3套(含答案)
- 江苏省盐城市大丰区部分学校2024-2025学年九年级上学期12月调研考试化学试题(含答案)
- 《上课用的小动物过冬》课件
- 2024版建筑工程设计居间协议3篇
- 医学教程 梅毒
- 贵州省铜仁市2023-2024学年高二上学期期末质量监测试题 地理 含答案
- 2025届新高考语文必背74篇古诗词译文(解析版)
- 《中国脓毒血症指南》课件
- 4.3.1海气相互作用课件高中地理湘教版(2019)选择性必修1
- 2023年天津南开区教育系统招聘笔试真题
- 问题解决策略:归纳课件2024-2025学年北师大版数学七年级上册
评论
0/150
提交评论