江苏省淮安市清江浦区2024年数学八年级下册期末教学质量检测试题含解析_第1页
江苏省淮安市清江浦区2024年数学八年级下册期末教学质量检测试题含解析_第2页
江苏省淮安市清江浦区2024年数学八年级下册期末教学质量检测试题含解析_第3页
江苏省淮安市清江浦区2024年数学八年级下册期末教学质量检测试题含解析_第4页
江苏省淮安市清江浦区2024年数学八年级下册期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省淮安市清江浦区2024年数学八年级下册期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连结CE.若▱ABCD的周长为16,则△CDE的周长是()A.16 B.10 C.8 D.62.某学习小组7名同学在一学期里阅读课外书籍的册数分别是:14,12,13,12,17,18,16,则这组数据中位数是()A.12B.13C.14D.173.如图是甲、乙两名运动员正式比赛前的5次训练成绩的折线统计图,你认为成绩较稳定的是()A.甲 B.乙C.甲、乙的成绩一样稳定 D.无法确定4.已知一元二次方程2x2﹣5x+1=0的两根为x1,x2,下列结论正确的是()A.两根之和等于﹣,两根之积等于1B.x1,x2都是有理数C.x1,x2为一正一负根D.x1,x2都是正数5.下列边长相等的正多边形的组合中,不能镶嵌平面的是()A.正三角形和正方形 B.正三角形和正六边形C.正方形和正八边形 D.正五边形和正方形6.如图,的周长为,对角线,相交于点,点是的中点,,则的周长为()A. B. C. D.7.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形8.如图,,要根据“”证明,则还要添加一个条件是()A. B. C. D.9.下列各式,计算结果正确的是()A.×=10 B.+= C.3-=3 D.÷=310.某红外线遥控器发出的红外线波长为0.00000094m,用科学记数法表示这个数是()A.m B.m C.m D.m11.下面四个式子中,分式为()A. B. C. D.12.下列是最简二次根式的为()A. B. C. D.(a>0)二、填空题(每题4分,共24分)13.如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠ADM的度数是_____.14.如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.15.若关于的一元二次方程没有实数根,则的取值范围为__________.16.在函数的图象上有两个点,,则的大小关系是___________.17.在甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为=0.56,=0.60,=0.45,=0.50,则成绩最稳定的是______.18.我国很多城市水资源短缺,为了加强居民的节水意识,某自来水公司采取分段收费标准.某市居民月交水费y(单位:元)与用水量x(单位:吨)之间的关系如图所示,若某户居民4月份用水18吨,则应交水费_____元.三、解答题(共78分)19.(8分)阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记作sinA,即sinA=例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.20.(8分)如下4个图中,不同的矩形ABCD,若把D点沿AE对折,使D点与BC上的F点重合;(1)图①中,若DE︰EC=2︰1,求证:△ABF∽△AFE∽△FCE;并计算BF︰FC;(2)图②中若DE︰EC=3︰1,计算BF︰FC=;图③中若DE︰EC=4︰1,计算BF︰FC=;(3)图④中若DE︰EC=︰1,猜想BF︰FC=;并证明你的结论21.(8分)先化简,再求值:,其中的值从不等式组的整数解中选取.22.(10分)如图①,四边形ABCD为正方形,点E,F分别在AB与BC上,且∠EDF=45°,易证:AE+CF=EF(不用证明).(1)如图②,在四边形ABCD中,∠ADC=120°,DA=DC,∠DAB=∠BCD=90°,点E,F分别在AB与BC上,且∠EDF=60°.猜想AE,CF与EF之间的数量关系,并证明你的猜想;(2)如图③,在四边形ABCD中,∠ADC=2α,DA=DC,∠DAB与∠BCD互补,点E,F分别在AB与BC上,且∠EDF=α,请直接写出AE,CF与EF之间的数量关系,不用证明.23.(10分)如图,AD是△ABC的角平分线,M是BC的中点,FM∥AD交BA的延长线于点F,交AC于点E.求证:(1)CE=BF.(2)AB+AC=2CE.24.(10分)如图l,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,连结EB,过点A作AMBE,垂足为M,AM交BD于点F.(1)求证:OE=OF;(2)如图2,若点E在AC的延长线上,AMBE于点M,交DB的延长线于点F,其它条件不变,则结论“OE=OF”还成立吗.如果成立,请给出证明;如果不成立,请说明理由.25.(12分)如图1,正方形ABCD的边长为6cm,点F从点B出发,沿射线AB方向以1cm/秒的速度移动,点E从点D出发,向点A以1cm/秒的速度移动(不到点A).设点E,F同时出发移动t秒.(1)在点E,F移动过程中,连接CE,CF,EF,则△CEF的形状是,始终保持不变;(2)如图2,连接EF,设EF交BD于点M,当t=2时,求AM的长;(3)如图3,点G,H分别在边AB,CD上,且GH=cm,连接EF,当EF与GH的夹角为45°,求t的值.26.蚌埠“一带一路”国际龙舟邀请赛期间,小青所在学校组织了一次“龙舟”故事知多少比赛,小青从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计.以下是根据抽取同学的分数制作的不完整的频率分布表和频率分布直方图,请根据图表,回答下列问题::组别分组频数频率190.1823210.4240.0652(1)根据上表填空:__,=.,=.(2)若小青的测试成绩是抽取的同学成绩的中位数,那么小青的测试成绩在什么范围内?(3)若规定:得分在的为“优秀”,若小青所在学校共有600名学生,从本次比赛选取得分为“优秀”的学生参加决赛,请问共有多少名学生被选拔参加决赛?

参考答案一、选择题(每题4分,共48分)1、C【解析】

根据线段垂直平分线性质得出,然后利用平行四边形性质求出,据此进一步计算出△CDE的周长即可.【详解】∵对角线的垂直平分线分别交于,∴,∵四边形是平行四边形,∴,∴,∴的周长,故选:C.【点睛】本题主要考查了平行四边形性质与线段垂直平分线性质的综合运用,熟练掌握相关概念是解题关键.2、C【解析】分析:根据中位数的意义求解即可.详解:从小到大排列:12,12,13,14,16,17,18,∵14排在中间,∴中位数是14.故选C.点睛:本题考查了中位数,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.3、A【解析】

观察图象可知:甲的波动较小,成绩较稳定.【详解】解:从图得到,甲的波动较小,甲的成绩稳定.故选:A.【点睛】本题考查方差的意义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.4、D【解析】

根据根与系数的关系,可得答案.【详解】解:A、x1+x2=,x1•x2=,故A错误;B、x1==,x2==,故B错误;C、x1==>0,x2==>0,故C错误;D、x1==>0,x2==>0,故D正确;故选:D.【点睛】本题考查查了根与系数的关系,利用根与系数的关系是解题关键.5、D【解析】

首先分别求出各个正多边形每个内角的度数,再结合镶嵌的条件作出判断.【详解】解:A项,正三角形的每个内角是60°,正方形的每个内角是90°,∵3×60°+2×90°=360°,∴能密铺;B项,正三角形的每个内角是60°,正六边形的每个内角是120°,∵2×60°+2×120°=360°,∴能密铺;C项,正八边形的每个内角是135°,正方形的每个内角是90°,∵2×135°+90°=360°,∴能密铺;D项,正五边形的每个内角是108°,正方形的每个内角是90°,∵90m+108n=360,m=4-6故选D.【点睛】本题考查了平面镶嵌的条件,解决此类问题,一般从正多边形的内角入手,围绕一个顶点处的所有内角之和是360°进行探究判断.6、C【解析】

由平行四边形的性质和已知条件得出OD=4,CD+BC=12,再证明OE是△BCD的中位线,得出DE+OE=6,即可得出结果.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=4,∵ABCD的周长为24,∴CD+BC=12,∵点E是CD的中点,∴DE=CD,OE是△BCD的中位线,

∴OE=BC,∴DE+OE=(CD+BC)=6,∴△DOE的周长=OD+DE+OE=4+6=10;故选C.【点睛】本题考查了平行四边形的性质、三角形中位线定理;熟练掌握平行四边形的性质,运用三角形中位线定理是解决问题的关键.7、A【解析】

根据对角线互相平分的四边形是平行四边形即可得出结论.【详解】解:∵O是AC、BD的中点,

∴OA=OC,OB=OD,

∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形);

故选:A.【点睛】本题考查了平行四边形的判定定理;熟练掌握平行四边形的判定定理是解题的关键.8、A【解析】

根据垂直定义求出∠CFD=∠AEB=90°,再根据得出,再根据全等三角形的判定定理推出即可.【详解】添加的条件是AB=CD;理由如下:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,∵,∴,在Rt△ABE和Rt△DCF中,∴Rt△ABE=R△DCF(HL)所以A选项是正确的.【点睛】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.9、D【解析】分析:根据二次根式的加减法对B、C进行判断;根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对D进行判断.详解:A、原式=,所以A选项错误;B、与不是同类二次根式,不能合并,所以B选项错误;C、原式=2,所以C选项错误;D、原式=,所以D选项正确.故选:D.点睛:本题考查了二次根式的运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10、A【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定0.00000094=9.4×10-1.故选A.11、B【解析】

判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】A.的分母中不含有字母,因此它是整式,而不是分式,故本选项错误;B.分母中含有字母,因此它们是分式,故本选项正确;C.是整式,而不是分式,故本选项错误;D.的分母中不含有字母,因此它们是整式,而不是分式.故本选项错误.故选B.【点睛】本题考查了分式的定义,熟知一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式是解答此题的关键.12、A【解析】

A.是最简二次根式;B.不是最简二次根式,;C.不是最简二次根式,;D.不是最简二次根式,.故选A.【点睛】本题考查最简二次根式:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.二、填空题(每题4分,共24分)13、75°【解析】

连接BD,根据BD,AC为正方形的两条对角线可知AC为BD的垂直平分线,所以∠AMD=AMB,求∠AMD,∠AMB,再根据三角形内角和可得.【详解】如图,连接BD,

∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°-∠BCE)=15°,∵∠BCM=∠BCD=45°,∴∠BMC=180°-(∠BCM+∠EBC)=120°∴∠AMB=180°-∠BMC=60°

∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°,∴∠ADM=180〬-∠DAC-∠AMD=180〬-45〬-60〬=75〬.故答案为75〬【点睛】本题考核知识点:正方形性质,等边三角形.解题关键点:运用正方形性质,等边三角形性质求角的度数.14、13.【解析】

利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案【详解】利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13【点睛】本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线15、【解析】

根据方程的系数结合根的判别式即可得出△=4-4m<0,解之即可得出结论.【详解】∵方程x2+2x+m=0没有实数根,∴△=22-4m=4-4m<0,解得:m>1.故答案为:m>1.【点睛】本题考查了根的判别式以及解一元一次不等式,熟练掌握“当△<0时,方程无实数根”是解题的关键.16、y1>y2【解析】分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质,由k的值判断函数的增减性,由此比较即可.详解:∵k=-5<0∴y随x增大而减小,∵-2<5∴>.故答案为:>.点睛:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限,y随x增大而增大;当k>0,b<0时,图像过一三四象限,y随x增大而增大;当k<0,b>0时,图像过一二四象限,y随x增大而减小;当k<0,b<0,图像过二三四象限,y随x增大而减小.17、丙【解析】

方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】因为=0.56,=0.60,=0.45,=0.50,所以<<<,由此可得成绩最稳定的为丙.故答案为:丙.【点睛】此题考查方差,解题关键在于掌握其定义.18、38.8【解析】

根据图形可以写出两段解析式,即可求得自来水公司的收费数.【详解】将(10,18)代入y=ax得:10a=18,解得:a=1.8,故y=1.8x(x⩽10)将(10,18),(15,31)代入y=kx+b得:,解得:,故解析式为:y=2.6x−8(x>10)把x=18代入y=2.6x−8=38.8.故答案为38.8.【点睛】本题考查用一次函数解决实际问题,关键是应用一次函数的性质.三、解答题(共78分)19、(1);(2);(3)2.【解析】分析:(1)根据sinA=直接写结论即可;(2)设AC=x,则BC=x,根据勾股定理得AB=,然后根据sinA=计算;(3)先根据sinB=求出AB的值,再利用勾股定理求BC的值即可.详解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2-AC2=16-12=4,∴BC=2.点睛:本题考查了信息迁移,勾股定理,正确理解在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦是解答本题的关键.20、(1)根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可,1:1;(2)1:2,1:3;(3)1︰(n-1)【解析】试题分析:根据折叠的性质及矩形的性质可证得△ABF∽△AFE∽△FCE,再根据相似三角形的性质求解即可.解:(1)∵∠BAF+∠AFB=90°,∠CFE+∠AFB=90°∴∠BAF=∠CFE∵∠B=∠C=90°∴△ABF∽△FCE∴BF︰CE=AB︰FC=AF︰FE∴AB︰AF=BF︰FE∵∠B=∠AFE=90°∴△ABF∽△AFE∴△ABF∽△AFE∽△FCE∵DE︰EC=2︰1∴FE︰EC=2︰1∴BF︰FC=1︰1(2)若DE︰EC=3︰1,则BF︰FC=1︰2;若DE︰EC=4︰1,计算BF︰FC=1︰3;(3)∵DE︰EC=︰1∴FE︰EC=︰1∴BF︰FC=1︰(n-1).考点:相似三角形的综合题点评:相似三角形的综合题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.21、,-2【解析】

先根据分式的混合运算顺序和运算法则化简原式,再解不等式组求得x的范围,据此得出x的整数值,继而根据分式有意义的条件得出x的值,代入计算可得.【详解】解:,解不等式组得,-1≤x≤,∴不等式组的整数解为-1,0,1,2,∵x≠±1且x≠0,

∴x=2,将x=2代入得,原式=.【点睛】本题主要考查了分式的化简求值以及解不等式组,解题的关键是掌握基本运算法则,并注意选取代入的数值一定要使原分式有意义.22、(1)AE+CF=EF,证明见解析;(2),理由见解析.【解析】

(1)由题干中截长补短的提示,再结合第(1)问的证明结论,在第二问可以用截长补短的方法来构造全等,从而达到证明结果.(2)同理作辅助线,同理进行即可,直接写出猜想,并证明.【详解】(1)图2猜想:AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB=∠BCD=90°,∴∠DAB=∠DCA'=90°,

又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=120°,∴∠EDA'=120°,∵∠EDF=60°,∴∠EDF=∠A'DF=60°,

又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE;(2)如图3,AE+CF=EF,证明:在BC的延长线上截取CA'=AE,连接A'D,∵∠DAB与∠BCD互补,∠BCD+∠DCA'=180°∴∠DAB=∠DCA',

又∵AD=CD,AE=A'C,∴△DAE≌△DCA'(SAS),∴ED=A'D,∠ADE=∠A'DC,∵∠ADC=2α,∴∠EDA'=2α,∵∠EDF=α,∴∠EDF=∠A'DF=α

又DF=DF,∴△EDF≌△A'DF(SAS),则EF=A'F=FC+CA'=FC+AE.【点睛】本题是常规的角含半角的模型,解决这类问题的通法:旋转(截长补短)构造全等即可,题目所给例题的思路,为解决此题做了较好的铺垫.23、(1)见解析;(2)见解析【解析】

(1)延长CA交FM的平行线BG于G点,利用平行线的性质得到BM=CM、CE=GE,从而证得CE=BF;

(2)利用上题证得的EA=FA、CE=BF,进一步得到AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【详解】解:(1)证明:延长CA交FM的平行线BG于G点,

则∠G=∠CAD,∠GBA=∠BAD,

∵AD平分∠BAC,

∴∠BAD=∠CAD,

∴AG=AB,

∵FM∥AD

∴∠F=∠BAD、∠FEA=∠DAC

∵∠BAD=∠DAC,

∴∠F=∠FEA,

∴EA=FA,

∴GE=BF,

∴M为BC边的中点,

∴BM=CM,

∵EM∥GB,

∴CE=GE,

∴CE=BF;

(2)证明:∵EA=FA、CE=BF,

∴AB+AC=AB+AE+EC=AB+AF+EC=BF+EC=2EC.【点睛】本题考查了三角形的中位线定理,解题的关键是正确地构造辅助线,另外题目中还考查了平行线等分线段定理.24、(1)证明见解析;(2)成立,证明见解析.【解析】

解:(1)∵四边形ABCD是正方形.∴∠BOE=∠AOF=90°,OB=OA,又∵AM⊥BE,∴∠MEA+∠MAE=90°=∠AFO+∠MAE∴∠MEA=∠AFO,∴Rt△BOE≌Rt△AOF∴OE=OF(2)OE=OF成立∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,OB=OA又∵AM⊥BE,∴∠F+∠MBF=90°=∠E+∠OBE又∵∠MBF=∠OBE∴∠F=∠E∴Rt△BOE≌R

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论