版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
天津市河西区名校2024届八年级数学第二学期期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,已知正方形ABCD的边长为5,E为BC边上的一点,∠EBC=30°,则BE的长为()A.cm B.2cm C.5cm D.10cm2.下列多项式中,能用完全平方公式分解因式的是()A. B. C. D.3.当时,一次函数的图象大致是()A. B.C. D.4.如图,矩形中,,,点从点出发,沿向终点匀速运动.设点走过的路程为,的面积为,能正确反映与之间函数关系的图象是()A. B.C. D.5.如图所示,在菱形ABCD中,已知两条对角线AC=24,BD=10,则此菱形的边长是()A.11 B.13 C.15 D.176.把代数式因式分解,结果正确的是()A. B. C. D.7.某校七年级体操比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各班代表队得分的中位数和众数分别是()A.7,7 B.7,8 C.8,7 D.8,88.若无解,则m的值是()A.3 B.﹣3 C.﹣2 D.29.已知:等边三角形的边长为6cm,则一边上的高为()A. B.2 C.3 D.10.将三角形纸片△ABC按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=8,BC=10,若以点B′,F,C为顶点的三角形与△ABC相似,那么BF的长度是().A.5 B. C.或4 D.5或11.如图,在正方形ABCD中,点P是AB上一动点(不与A,B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;②PM+PN=BD;③PE2+PF2=PO2.其中正确的有()A.0个 B.1个 C.2个 D.3个12.已知点(-4,y1),(2,y2)都在直线y=-3x+2上,则y1,y2的大小关系是A.y1>y2 B.y1=y2 C.y1<y2 D.不能比较二、填空题(每题4分,共24分)13.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第_____象限.14.计算:=_____________。15.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.16.如图,平行四边形ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,连接AP,若S△APH=2,则S四边形PGCD=______.17.如图,△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,且AB=10cm,则△DEB的周长是_____cm.18.关于的x方程=1的解是正数,则m的取值范围是_____.三、解答题(共78分)19.(8分)已知:A(0,1),(1)在直角坐标系中画出△ABC;(2)求△ABC的面积;(3)设点P在x轴上,且△ABP与△ABC的面积相等,请直接写出点P的坐标.20.(8分)如图,在中,分别是的平分线.求证:四边形是平行四边形.21.(8分)已知,如图,在三角形中,,于,且.点从点出发,沿方向匀速运动,速度为;同时点由点出发,沿方向匀速运动,速度为,过点的动直线,交于点,连结,设运动时间为,解答下列问题:(1)线段_________;(2)求证:;(3)当为何值时,以为顶点的四边形为平行四边形?22.(10分)如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交于y轴于点H.(1)连接BM,动点P从点A出发,沿折线ABC方向以1个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(2)在(1)的情况下,当点P在线段AB上运动时,是否存在以BM为腰的等腰三角形BMP?如存在,求出t的值;如不存在,请说明理由.23.(10分)已知x、y满足方程组,求代数式的值.24.(10分)某中学形展“唱红歌”比赛活动,九年级(1)、(2)班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据图示填写下表:班级平均数(分)中位数(分)众数(分)九(1)85九(2)85100(2)结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;(3)计算两班复赛成绩的方差.25.(12分)如图,小明在研究性学习活动中,对自己家所在的小区进行调查后发现,小区汽车入口宽AB为3.3m,在入口的一侧安装了停止杆CD,其中AE为支架.当停止杆仰起并与地面成60°角时,停止杆的端点C恰好与地面接触.此时CA为0.7m.在此状态下,若一辆货车高3m,宽2.5m,入口两侧不能通车,那么这辆货车在不碰杆的情况下,能从入口内通过吗?请你通过计算说明.(参考数据:≈1.7)26.如图,在□ABCD中,∠B=60°.(1)作∠A的角平分线与边BC交于点E(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:△ABE是等边三角形.
参考答案一、选择题(每题4分,共48分)1、D【解析】试题解析:设根据勾股定理,故选D.2、C【解析】
对下列各式进行因式分解,然后判断利用完全平方公式分解即可.【详解】解:A、,不能用完全平方公式分解因式,故A选项错误;B、,不能用完全平方公式分解因式,故B选项错误;C、,能用完全平方公式分解,故C选项正确;D、不能用完全平方公式分解因式,故D选项错误;故选:C.【点睛】本题考查了因式分解,熟练掌握因式分解的公式法是解本题的关键.3、A【解析】
根据k=1>0可得图象的斜率,根据b<0可得直线与y轴的交点在x轴的下方.【详解】解:∵k=1>0,∴y随x的增大而增大,又∵b<0,∴函数图象与y轴交于负半轴.故选A.【点睛】本题主要考查一次函数的图象性质,当=kx+b(k,b为常数,k≠0)时:当k>0,b>0,这时此函数的图象经过一,二,三象限;当k>0,b<0,这时此函数的图象经过一,三,四象限;当k<0,b>0,这时此函数的图象经过一,二,四象限;当k<0,b<0,这时此函数的图象经过二,三,四象限.4、A【解析】
当点P在CD上运动时,如下图所示,连接AC,根据平行线之间的距离处处相等,可判断此时不变,且=S△ABC,根据三角形的面积公式即可得出结论.【详解】解:当点P在CD上运动时,如下图所示,连接AC根据平行线之间的距离处处相等,故此时的面积为不变,故可排除C、D此时=S△ABC=,故可排除B故选A.【点睛】此题考查的是函数的图象,掌握函数图象中横纵坐标的意义和平行线之间的距离处处相等是解决此题的关键.5、B【解析】
由菱形的性质可得AO=12AC=12,BO=12【详解】如图,∵四边形ABCD是菱形∴AC⊥BD,AO=12AC=12,BO=1∴AB=AO故选B.【点睛】本题考查了菱形的性质,利用勾股定理求AB长是本题的关键.6、C【解析】
根据提公因式,平方差公式,可得答案.【详解】解:==,故选:C.【点睛】本题考查了因式分解,一提,二套,三检查,分解要彻底.7、A【解析】
根据众数与中位数的定义分别进行解答即可.【详解】由于共有7个数据,则中位数为第4个数据,即中位数为7,
这组数据中出现次数最多的是7分,一共出现了3次,则众数为7,
故选:A.【点睛】考查了众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.8、D【解析】方程两边同乘以x-3可得m+1-x=0,因无解,可得x=3,代入得m=2,故选D.9、C【解析】
根据等边三角形的性质三线合一求出BD的长,再利用勾股定理可求高.【详解】如图,AD是等边三角形ABC的高,根据等边三角形三线合一可知BD=BC=3,∴它的高AD==,故选:C.【点睛】本题考查等边三角形的性质及勾股定理,较为简单,解题的关键是掌握勾股定理.直角三角形两条直角边的平方和等于斜边的平方.10、D【解析】
根据折叠得到BF=B′F,根据相似三角形的性质得到或,设BF=x,则CF=10-x,即可求出x的长,得到BF的长,即可选出答案.【详解】解:∵△ABC沿EF折叠B和B′重合,
∴BF=B′F,
设BF=x,则CF=10-x,
∵当△B′FC∽△ABC,,∵AB=8,BC=10,
∴,解得:x=,
即:BF=,当△FB′C∽△ABC,,,解得:x=5,故BF=5或,故选:D.【点睛】本题主要考查了相似三角形的性质,以及图形的折叠问题,解此题的关键是设BF=x,根据相似三角形的性质列出比例式.11、D【解析】
依据正方形的性质以及勾股定理、矩形的判定方法即可判断△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形,从而作出判断.【详解】解:∵四边形ABCD是正方形,
∴∠BAC=∠DAC=45°.
在△APE和△AME中,
∠BAC=∠DAC
AE=AE
∠AEP=∠AEM,
∴△APE≌△AME(ASA),故①正确;
∴PE=EM=PM,
同理,FP=FN=NP.
∵正方形ABCD中,AC⊥BD,
又∵PE⊥AC,PF⊥BD,
∴∠PEO=∠EOF=∠PFO=90°,且△APE中AE=PE
∴四边形PEOF是矩形.
∴PF=OE,
∴PE+PF=OA,
又∵PE=EM=PM,FP=FN=NP,OA=AC,
∴PM+PN=AC,∴PM+PN=BD;故②正确;
∵四边形ABCD是矩形,
∴AC⊥BD,
∴∠AOB=90°,
∵PE⊥AC,PF⊥BD,
∴∠OEP=∠EOF=∠OFP=90°,
∴四边形PEOF是矩形,
∴OE=PF,OF=PE,
在直角△OPF中,OE²+PE²=PO²,
∴PE²+PF²=PO²,故③正确;∴正确的有3个,故选:D【点睛】本题是正方形的性质、矩形的判定、勾股定理的综合应用,认识△APM和△BPN以及△APE、△BPF都是等腰直角三角形,四边形PEOF是矩形是关键.12、A【解析】
先求出y1,y1的值,再比较其大小即可.【详解】解:∵点(-4,y1),(1,y1)都在直线y=−3x+1上,∴y1=11+1=14,y1=−6+1=−4,∴y1>y1.故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.二、填空题(每题4分,共24分)13、二【解析】
根据各象限内点的坐标特征,可得答案.【详解】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).14、2+【解析】
按二次根式的乘法法则求解即可.【详解】解:.【点睛】本题考查的是二次根式的乘法运算,熟练掌握二次根式的乘法法则是解题的关键.15、AB=2BC.【解析】
先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.【详解】解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形BCDE是平行四边形,∵AB=2BC,∴BE=BC,∴四边形BCDE是菱形.故答案为:AB=2BC.【点睛】本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.16、1.【解析】
根据平行四边形的判定定理得到四边形HPFD、四边形PGCF是平行四边形,根据平行四边形的性质、三角形的面积公式计算即可.【详解】∵EF∥BC,GH∥AB,∴四边形HPFD、四边形PGCF是平行四边形,∵S△APH=2,CG=2BG,∴S△DPH=2S△APH=4,∴平行四边形HPFD的面积=1,∴平行四边形PGCF的面积=×平行四边形HPFD的面积=4,∴S四边形PGCD=4+4=1,故答案为1.【点睛】本题考查的是平行四边形的判定和性质、三角形的面积计算,掌握平行四边形的性质定理是解题的关键.17、10【解析】试题分析:根据角平分线的性质可得:CD=DE,△ACD和△AED全等,则AE=AC,根据AC=BC可知AE=BC,则△DEB的周长=DE+BD+BE=CD+BD+BE=BC+BE=AE+BE=AB=10cm.18、m>﹣5且m≠0【解析】
先解关于x的分式方程,求得x的值,然后再依据“解是正数”建立不等式求m的取值范围即可.【详解】去分母,得m=x-5,即x=m+5,∵方程的解是正数,∴m+5>0,即m>-5,又因为x-5≠0,∴m≠0,则m的取值范围是m>﹣5且m≠0,故答案为:m>﹣5且m≠0.【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及注意事项是解题的关键.这里要注意分母不等于0这个隐含条件.三、解答题(共78分)19、(1)详见解析;(2)面积为4;(3)(-6,0).(10,0);【解析】
(1)确定出点A、B、C的位置,连接AC、CB、AB即可;(2)过点C向x、y轴作垂线,垂足为D、E,△ABC的面积=四边形DOEC的面积−△ACE的面积−△BCD的面积−△AOB的面积;(3)点P在x轴上时,由△ABP的面积=4,求得:BP=8,故此点P的坐标为10,0或-6,0.【详解】(1)如图所示:
(2)过点C向x、y轴作垂线,垂足为D、E,∴四边形DOEC的面积=3×4=12,△BCD的面积=12×2×3=3,△ACE的面积=∴△ABC的面积=四边形DOEC的面积−△ACE的面积−△BCD的面积−△AOB的面积=12-3-4-1=4.(3)∵点P在x轴上,∴△ABP的面积=12AO⋅BP=4所以点P的坐标为10,0或-6,0.【点睛】本题主要考查的是点的坐标与图形的性质,明确△ABC的面积=四边形DOEC的面积−△ACE的面积−△BCD的面积−△AOB的面积是解题的关键.20、详见解析.【解析】
由四边形ABCD是平行四边形可得,CE∥AF,∠DAB=∠DCB,又AE、CF分别平分∠DAB、∠BCD,所以∠2=∠3,可证四边形AFCE是平行四边形.【详解】∵四边形ABCD是平行四边形,∴CE∥AF,∠DAB=∠DCB,∵AE、CF分别平分∠DAB、∠BCD,∴∠2=∠3,又∠3=∠CFB,∴∠2=∠CFB,∴AE∥CF,又CE∥AF,∴四边形AFCE是平行四边形.21、(1)12;(2)证明见详解;(3)或t=4s.【解析】
(1)由勾股定理求出AD即可;
(2)由等腰三角形的性质和平行线的性质得出∠PBQ=∠PQB,再由等腰三角形的判定定理即可得出结论;
(3)分两种情况:①当点M在点D的上方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AD-AM=12-4t,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可;
②当点M在点D的下方时,根据题意得:PQ=BP=t,AM=4t,AD=12,得出MD=AM-AD=4t-12,由PQ∥MD,当PQ=MD时,四边形PQDM是平行四边形,得出方程,解方程即可.【详解】(1)解:∵BD⊥AC,
∴∠ADB=90°,
∴(cm),
(2)如图所示:∵AB=AC,
∴∠ABC=∠C,即∠PBQ=∠C,
∵PQ∥AC,
∴∠PQB=∠C,
∴∠PBQ=∠PQB,
∴PB=PQ;(3)分两种情况:
①当点M在点D的上方时,如图2所示:
根据题意得:PQ=BP=t,AM=4t,AD=12,
∴MD=AD-AM=12-4t,
∵PQ∥AC,
∴PQ∥MD,
∴当PQ=MD时,四边形PQDM是平行四边形,
即:当t=12-4t,时,四边形PQDM是平行四边形,
解得:(s);
②当点M在点D的下方时,如图3所示:
根据题意得:PQ=BP=t,AM=4t,AD=12,
∴MD=AM-AD=4t-12,
∵PQ∥AC,
∴PQ∥MD,
∴当PQ=MD时,四边形PQDM是平行四边形,
即:当t=4t-12时,四边形PQDM是平行四边形,
解得:t=4(s);
综上所述,当或t=4s时,以P、Q、D、M为顶点的四边形为平行四边形.【点睛】本题是四边形综合题目,考查了平行四边形的判定、等腰三角形的判定与性质、勾股定理以及分类讨论等知识;本题综合性强,熟练掌握平行四边形的判定方法,进行分类讨论是解决问题(3)的关键.22、(1)详见解析;(2)当t=1或时,△PMB为以BM为腰的等腰三角形.【解析】
(1)设点M到BC的距离为h,由△ABC的面积易得h,利用分类讨论的思想,三角形的面积公式①当P在直线AB上运动;②当P运动到直线BC上时分别得△PBM的面积;(2)分类讨论:①当MB=MP时,PH=BH,解得t;②当BM=BP时,利用勾股定理可得BM的长,易得t.【详解】解:(1)设点M到BC的距离为h,由S△ABC=S△ABM+S△BCM,即,∴h=,①当P在直线AB上运动时△PBM的面积为S与P的运动时间为t秒关系为:S=(5﹣t)×,即S=﹣(0≤t<5);②当P运动到直线BC上时△PMB的面积为S与P的运动时间为t秒关系为:S=[5﹣(10﹣t)]×,即S=t-(5<t≤10);(2)存在①当MB=MP时,∵点A的坐标为(﹣3,4),AB=5,MB=MP,MH⊥AB,∴PH=BH,即3﹣t=2,∴t=1;②当BM=BP时,即5﹣t=,∴综上所述,当t=1或时,△PMB为以BM为腰的等腰三角形.【点睛】此题考查四边形综合题,解题关键在于利用三角形面积公式进行计算23、【解析】
原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=,则原式=.【点睛】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.24、(1)九(1)的平均数为85,众数为85
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版广告公司打字员劳动合同样本
- 2024版智能音响设备销售合同样式2篇
- 门购销合同四篇
- 广东省深中、华附、省实、广雅四校联考2025届高考英语全真模拟密押卷含解析
- 2025届四川省遂宁市射洪中学高考英语必刷试卷含解析
- 深圳市第二高级中学2025届高三第二次诊断性检测语文试卷含解析
- 2025届云南省宣威市二中高三3月份第一次模拟考试数学试卷含解析
- 浙江省杭州地区七校联考2025届高考英语全真模拟密押卷含解析
- 吉林省延边朝鲜族自治州延吉市第二中学2025届高三考前热身英语试卷含解析
- 河北省邢台市捷径2025届高三第一次调研测试英语试卷含解析
- 静脉导管常见并发症护理
- Unit 5单元教案2024-2025学年人教版英语七年级上册
- 《地震产生探究》(教案) 小学科学校本课程
- 2024年河南省高考对口升学语文英语试题
- 《第2课时 光合作用与能量转化》参考课件1
- 2023年江苏常州中考满分作文《方寸之间天地大》4
- 2023年法律职业资格《主观题》真题及答案
- 2024年初三数学竞赛考试试题
- 房地产营销工作排期【倒排计划表】
- 某大学中西医临床(专升本)学士学位考试复习题
- 调查询问笔录授权委托书
评论
0/150
提交评论