版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武汉江夏区五校联考2024年八年级下册数学期末学业水平测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某校举办“汉字听写大赛”,7名学生进入决赛,他们所得分数互不相同,比赛共设3个获奖名额,某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是()A.平均数 B.中位数 C.众数 D.方差2.如图,菱形ABCD中,点M是AD的中点,点P由点A出发,沿A→B→C→D作匀速运动,到达点D停止,则△APM的面积y与点P经过的路程x之间的函数关系的图象大致是()A. B.C. D.3.如图1,在△ABC和△DEF中,AB=AC=m,DE=DF=n,∠BAC=∠EDF,点D与点A重合,点E,F分别在AB,AC边上,将图1中的△DEF沿射线AC的方向平移,使点D与点C重合,得到图2,下列结论不正确的是()A.△DEF平移的距离是m B.图2中,CB平分∠ACEC.△DEF平移的距离是n D.图2中,EF∥BC4.将五个边长都为2的正方形按如图所示摆放,点分别是四个正方形的中心,则图中四块阴影面积的和为()A.2 B.4 C.6 D.85.下列式子中,不可以取1和2的是()A. B. C. D.6.下列多项式中不能用公式分解的是()A.a2+a+ B.-a2-b2-2ab C.-a2+25b2 D.-4-b27.点在反比例函数的图象上,则下列各点在此函数图象上的是().A. B. C. D.8.若三角形的各边长分别是8cm、10cm和16cm,则以各边中点为顶点的三角形的周长为()A.34cm B.30cm C.29cm D.17cm9.对于数据:80,88,85,85,83,83,1.下列说法中错误的有()①这组数据的平均数是1;②这组数据的众数是85;③这组数据的中位数是1;④这组数据的方差是2.A.1个 B.2个 C.3个 D.4个10.如图,OC为∠AOB的平分线,CM⊥OB于M,OC=5,OM=4,则点C到射线OA的距离为()A.2 B.3 C.4 D.511.我省某市五月份第二周连续七天的空气质量指数分别为:111、96、47、68、70、77、105,则这七天空气质量指数的平均数是()A.71.8 B.77 C.82 D.95.712.在矩形ABCD中,对角线AC,BD交于点O,OE∥BC交CD于E,若OE=3cm,CE=2,则矩形ABCD的周长()A.10 B.15 C.20 D.22二、填空题(每题4分,共24分)13.画在比例尺为的图纸上的某个零件的长是,这个零件的实际长是_______.14.平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为______.15.如图,在△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC方向平移2个单位后得到△DEF,连接DC,则DC的长为________________.16.点A(﹣3,0)关于y轴的对称点的坐标是__.17.因式分解:_________18.如图,双曲线y=(x>0)经过四边形OABC的顶点A、C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴.将△ABC沿AC翻折后得△AB′C,B′点落在OA上,则四边形OABC的面积是.三、解答题(共78分)19.(8分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.(1)求证:四边形是平行四边形.(2)当时,若,,求的长.20.(8分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h),抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为,所抽查的学生人数为.(2)求出平均睡眠时间为8小时的人数,并补全频数直方图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1200名,请你估计睡眠不足(少于8小时)的学生数.21.(8分)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛,各参赛选手的成绩如下:九(1)班:88,91,92,93,93,93,94,98,98,100;九(2)班:89,93,93,93,95,96,96,98,98,1.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差九(1)班100m939312九(2)班195np8.4(1)直接写出表中m、n、p的值为:m=______,n=______,p=______;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持九(2)班成绩更好的理由;(3)学校确定了一个标准成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果九(2)班有一半的学生能够达到“优秀”等级,你认为标准成绩应定为______分,请简要说明理由.22.(10分)如图1.点D,E在△ABC的边BC上.连接AD.AE.①AB=AC:②AD=AE:③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论.构成三个命题:①②③;①③②,②③①.(1)以上三个命题是真命题的为(直接作答)__________________;(2)选择一个真命题进行证明(先写出所选命题.然后证明).23.(10分)已知,如图,正方形的边长为4厘米,点从点出发,经沿正方形的边以2厘米/秒的速度运动;同时,点从点出发以1厘米/秒的速度沿向点运动,设运动时间为t秒,的面积为平方厘米.(1)当时,的面积为__________平方厘米;(2)求的长(用含的代数式表示);(3)当点在线段上运动,且为等腰三角形时,求此时的值;(4)求与之间的函数关系式.24.(10分)先化简,再求值:,其中x=.25.(12分)我们给出如下定义:把对角线互相垂直的四边形叫做“正交四边形”.如图1,在四边形ABCD中,AC⊥BD,四边形ABCD就是“正交四边形”.(1)下列四边形,一定是“正交四边形”的是______.①平行四边形②矩形③菱形④正方形(2)如图2,在“正交四边形”ABCD中,点E、F、G、H(3)小明说:“计算‘正交四边形’的面积可以仿照菱形的方法,面积是对角线之积的一半.”小明的说法正确吗?如果正确,请给出证明;如果错误,请给出反例.26.如图,有一个直角三角形纸片,两直角边cm,cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
参考答案一、选择题(每题4分,共48分)1、B【解析】
由于比赛设置了3个获奖名额,共有7名选手参加,故应根据中位数的意义分析.【详解】解:因为3位获奖者的分数肯定是7名参赛选手中最高的,而且7个不同的分数按从小到大排序后,中位数之后的共有3个数,故只要知道自己的分数和中位数就可以知道是否获奖了.故选:.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2、D【解析】
根据菱形的性质及三角形面积的计算公式可知当点P在BC边上运动时△APM的高不度面积不变,结合选项马上可得出答案为D【详解】解:当点P在AB上运动时,可知△APM的面积只与高有关,而高与运动路程AP有关,是一次函数关系;当点P在BC上时,△APM的高不会发生变化,所以此时△APM的面积不变;当点P在CD上运动时,△APM的面积在不断的变小,并且它与运动的路程是一次函数关系
综上所述故选:D.【点睛】本题考查了动点问题的函数图象:利用点运动的几何性质列出有关的函数关系式,然后根据函数关系式画出函数图象,注意自变量的取值范围.3、C【解析】
根据平移的性质即可得到结论.【详解】∵AD=AC=m,∴△DEF平移的距离是m,故A正确,C错误,∵AB=AC,∴∠ACB=∠ABC,∵DE∥AB,∴∠EDB=∠ABC,∴∠ACB=∠ECB,∴CB平分∠ACE,故B正确;由平移的性质得到EF∥BC,故D正确.故选C.【点睛】本题考查了平移的性质,等腰三角形的性质,平行线的性质,熟练正确平移的性质是解题的关键.4、B【解析】
连接AP、AN,点A是正方形的对角线的交点,则AP=AN,∠APF=∠ANE=45°,易得PAF≌△NAE,进而可得四边形AENF的面积等于△NAP的面积,同理可得答案.【详解】解:如图,连接AP,AN,点A是正方形的对角线的交则AP=AN,∠APF=∠ANE=45°,∵∠PAF+∠FAN=∠FAN+∠NAE=90°,∴∠PAF=∠NAE,∴△PAF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm1,四块阴影面积的和为4cm1.故选B.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.5、D【解析】
根据二次根式有意义的条件即可求出答案.【详解】A.中a≥0,所以a可以取1和2,故选项A不符合题意;B.中,即a≥1或a≤-1,所以a可以取1和2,故选项B不符合题意;C.中,-a+3≥0,即a≤3,所以a可以取1和2,故选项C不符合题意;D,当a取1和2时,二次根式无意义,故选项D符合题意.故选D.【点睛】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件.6、D【解析】分析:各项利用平方差公式及完全平方公式判断即可.详解:A.原式=(a+)2,不合题意;B.原式=-(a+b)2,不合题意;C.原式=(5b+a)(5b﹣a),不合题意;D.原式不能分解,符合题意.故选D.点睛:本题考查了因式分解﹣运用公式法,熟练掌握公式是解答本题的关键.7、A【解析】
用待定系数法确定反比例函数的解析式,再验证选项中的点是否满足解析式即可,若满足函数解析式,则在函数图像上.【详解】解:将点代入,∴,∴,∴点在函数图象上,故选:A.【点睛】本题考查了反比例函数解析式的求法及根据解析式确定点在函数图形上,会求反比例函数的解析式是解题的关键.8、D【解析】
根据三角形中位线定理分别求出DE、EF、DF,根据三角形的周长公式计算即可.【详解】解:∵D、E分别为AB、BC的中点,
∴DE=AC=5,
同理,DF=BC=8,FE=AB=4,
∴△DEF的周长=4+5+8=17(cm),
故选D.【点睛】本题考查的是三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.9、B【解析】由平均数公式可得这组数据的平均数为1;在这组数据中83出现了2次,85出现了2次,其他数据均出现了1次,所以众数是83和85;将这组数据从小到大排列为:80、83、83、1、85、85、88,可得其中位数是1;其方差为,故选B.10、B【解析】
过C作CF⊥AO,根据勾股定理可得CM的长,再根据角的平分线上的点到角的两边的距离相等,可得CF=CM,进而可得答案.【详解】解:如图,过C作CF⊥AO于F
∵OC为∠AOB的平分线,CM⊥OB,
∴CM=CF,
∵OC=5,OM=4,
∴CM=3,
∴CF=3,
故选:B.【点睛】此题主要考查了角平分线的性质,关键是掌握角的平分线上的点到角的两边的距离相等.11、C【解析】平均数是指在一组数据中所有数据之和再除以数据的个数,因此,。故选C。12、C【解析】
由矩形ABCD中,对角线AC和BD交于点O,OE∥BC,可得OE是△ACD的中位线,根据三角形中位线的性质,即可求得AD、CD的长.进而解答即可.【详解】∵四边形ABCD是矩形,∴OA=OC,AD∥BC,∵OE∥BC,∴OE∥AD,∴OE是△ACD的中位线,∵OE=3cm,∴AD=2OE=2×3=6(cm).∵CE=2,∴CD=4,∴矩形ABCD的周长=20,故选:C.【点睛】此题考查了矩形的性质以及三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.二、填空题(每题4分,共24分)13、640【解析】
首先设这个零件的实际长是xcm,根据比例尺的定义即可得方程,解此方程即可求得答案,注意单位换算.【详解】解:设这个零件的实际长是xcm,根据题意得:,解得:x=640,则这个零件的实际长是640cm.故答案为:640【点睛】此题考查了比例尺的应用.此题比较简单,注意掌握方程思想的应用.14、14cm或16cm【解析】试题分析:根据题意画出图形,由平行四边形得出对边平行,又由角平分线可以得出△ABE为等腰三角形,然后分别讨论BE=2cm,CE=3cm或BE=3cm,CE=2cm,继而求得答案.解:如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵AE为角平分线,∴∠DAE=∠BAE,∴∠AEB=∠BAE,∴AB=BE,∴①当AB=BE=2cm,CE=3cm时,则周长为14cm;②当AB=BE=3cm时,CE=2cm,则周长为16cm.故答案为14cm或16cm.考点:平行四边形的性质.15、1.【解析】
∵△ABC沿射线BC方向平移2个单位后得到△DEF,∴DE=AB=1,CE=BC−BE=6−2=1,∵∠B=∠DEC=60°,∴△DEC是等边三角形,∴DC=1,故答案为1.【点睛】本题考查了平移的性质,熟记性质得到相等的线段是解题的关键.16、(3,0)【解析】试题分析:因为点P(a,b)关于y轴的对称点的坐标是(-a,b),所以点A(﹣3,0)关于y轴的对称点的坐标是(3,0),故答案为(3,0)考点:关于y轴对称的点的坐标.17、x(x-9)【解析】分析:直接提取公因式x,进而分解因式即可.详解:x2﹣9x=x(x﹣9).故答案为:x(x﹣9).点睛:本题主要考查了提取公因式法分解因式,正确找出公因式是解题的关键.18、1.【解析】
延长BC,交x轴于点D,设点C(x,y),AB=a,由角平分线的性质得,CD=CB′,则△OCD≌△OCB′,再由翻折的性质得,BC=B′C,根据反比例函数的性质,可得出S△OCD=xy,则S△OCB′=xy,由AB∥x轴,得点A(x-a,1y),由题意得1y(x-a)=1,从而得出三角形ABC的面积等于ay,即可得出答案.【详解】延长BC,交x轴于点D,设点C(x,y),AB=a,∵OC平分OA与x轴正半轴的夹角,∴CD=CB′,△OCD≌△OCB′,再由翻折的性质得,BC=B′C,∵双曲线
(x>0)经过四边形OABC的顶点A.
C,∴S△OCD=xy=1,∴S△OCB′=xy=1,由翻折变换的性质和角平分线上的点到角的两边的距离相等可得BC=B′C=CD,∴点A.
B的纵坐标都是1y,∵AB∥x轴,∴点A(x−a,1y),∴1y(x−a)=1,∴xy−ay=1,∵xy=1∴ay=1,∴S△ABC=ay=,∴SOABC=S△OCB′+S△AB′C+S△ABC=1++=1.故答案为:1.三、解答题(共78分)19、(1)详见解析;(2)【解析】
(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.【详解】(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴∵AB=2DB=4,BE=3,【点睛】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20、(1)45%,60;(2)见解析18;(3)7,7.2;(4)780【解析】
(1)根据睡眠时间为6小时、7小时、8小时、9小时的百分比之和为1可得a的值,用睡眠时间为6小时的人数除以所占的比例即可得到抽查的学生人数;(2)用抽查的学生人数乘以睡眠时间为8小时所占的比例即可得到结果;(3)根据众数,平均数的定义即可得到结论;(4)用学生总数乘以抽样中睡眠不足(少于8小时)的学生数所占的比例列式计算即可.【详解】(1)a=1﹣20%﹣30%﹣5%=45%;所抽查的学生人数为:3÷5%=60(人).故答案为:45%,60;(2)平均睡眠时间为8小时的人数为:60×30%=18(人);(3)这部分学生的平均睡眠时间的众数是7人,平均数7.2(小时);(4)1200名睡眠不足(少于8小时)的学生数1200=780(人).【点睛】本题考查了频数(率)分布直方图,扇形统计图,以及用样本估计总体,弄清题意是解答本题的关键.21、(1)94,92.2,93;(2)见解析;(3)92.2.【解析】
(1)求出九(1)班的平均分确定出m的值,求出九(2)班的中位数确定出n的值,求出九(2)班的众数确定出p的值即可;(2)分别从平均分,方差,以及中位数方面考虑,写出支持九(2)班成绩好的原因;(3)用中位数作为一个标准即可衡量是否有一半学生达到优秀等级.【详解】解:(1)九(1)班的平均分==94,九(2)班的中位数为(96+92)÷2=92.2,九(2)班的众数为93,故答案为:94,92.2,93;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩集中在中上游;③九(2)班的成绩比九(1)班稳定;故支持B班成绩好;(3)如果九(2)班有一半的学生评定为“优秀”等级,标准成绩应定为92.2(中位数).因为从样本情况看,成绩在92.2以上的在九(2)班有一半的学生.可以估计,如果标准成绩定为92.2,九(2)班有一半的学生能够评定为“优秀”等级,故答案为92.2.【点睛】本题考查了平均数、中位数、众数以及方差的定义,属于统计中的基本题型,需重点掌握.22、(1)①②③;①③②;②③①.(2)见解析【解析】
(1)根据真命题的定义即可得出结论,(2)根据全等三角形的判定方法及全等三角形的性质即可证明.【详解】解:(1)①②③;①③②;②③①.(2)如①③②AB=AC=BD=CE△ABD≌△ACEAD=AE23、(1)8;(1)BP=;(2);(3)S.【解析】
(1)先确定当t=1时P和Q的位置,再利用三角形面积公式可得结论;(1)分两种情况表示BP的长;(2)如图1,根据CQ=CP列方程可解答;(3)分两种情况:①当0≤t≤1时,P在AB上,如图2,②当1<t≤3时,P在BC上,如图3,根据三角形面积公式可得结论.【详解】(1)当t=1时,点P与B重合,Q在CD上,如图1,∴△APQ的面积8(平方厘米).故答案为:8;(1)分两种情况:当0≤t≤1时,P在AB上,BP=AB﹣AP=3﹣1t,当1<t≤3时,P在BC上,BP=1t﹣3;综上所述:BP=;(2)如图1.∵△PCQ为等腰三角形,∴CQ=CP,即t=8﹣1t,t,∴当点P在线段BC上运动,且△PCQ为等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 造瘘术前的心理护理
- 半导体封测行业报告:景气向上
- 肺心病出院护理措施
- 结核病的预防与感冒的关联
- 绪言 化学使世界变得更加绚丽多彩 第1单元 走进化学世界 复习课件
- 适龄儿童、少年免学申请表
- 2020-2021学年人教部编版语文二年级下册-《要是你在野外迷了路》教案
- 肺炎的中医护理方案
- 2024-2025学年年七年级数学人教版下册专题整合复习卷测试5 用函数观点看一元二次方程(含答案)
- ICU护士与家属的沟通技巧课件
- 2024太重集团校园招聘公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 2023年马原期末复习知识点总结
- 机房设备搬迁解决方案
- MOOC 理解马克思-南京大学 中国大学慕课答案
- 中小学国防教育知识答题(题库及答案)
- 儿童食物过敏护理培训
- 防欺凌家长会内容
- ERAS理念下食管癌根治术的麻醉管理
- C++语言基础知识
- 盐在化妆品中的应用
- 信息化系统建设推进方案
评论
0/150
提交评论