2024年辽宁省大连高新区七校联考数学八年级下册期末复习检测试题含解析_第1页
2024年辽宁省大连高新区七校联考数学八年级下册期末复习检测试题含解析_第2页
2024年辽宁省大连高新区七校联考数学八年级下册期末复习检测试题含解析_第3页
2024年辽宁省大连高新区七校联考数学八年级下册期末复习检测试题含解析_第4页
2024年辽宁省大连高新区七校联考数学八年级下册期末复习检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年辽宁省大连高新区七校联考数学八年级下册期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.若分式的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.用配方法解方程,下列配方正确的是()A. B. C. D.3.若线段a,b,c组成直角三角形,则它们的比可以为()A.2∶3∶4 B.7∶24∶25 C.5∶12∶14 D.4∶6∶104.如图,四边形ABCD是菱形,AB=5,AC=6,AE⊥BC于E,则AE等于()A.4 B. C. D.55.如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图②,那么平行四边形ABCD的面积为()A.4 B. C. D.86.如图,已知AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是()A. B. C. D.7.用四张全等的直角三角形纸片拼成了如图所示的图形,该图形()A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形8.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为8.8环,方差分别为,,=0.48,=0.45,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁9.下列图形,可以看作中心对称图形的是()A. B. C. D.10.方程有()A.两个不相等的实数根 B.两个相等的实数根 C.无实数根 D.无法确定二、填空题(每小题3分,共24分)11.已知关于x的一次函数y=(3a-7)x+a-2的图像与y轴的交点在x轴的上方,且y随x的增大而减小,则a的取值范围为__________.12.直角三角形两直角边的长分别为3和4,则此直角三角形斜边上的中线长为______.13.已知正方形的一条对角线长为cm,则该正方形的边长为__________cm.14.如图,点E,F分别在x轴,y轴的正半轴上.点在线段EF上,过A作分别交x轴,y轴于点B,C,点P为线段AE上任意一点(P不与A,E重合),连接CP,过E作,交CP的延长线于点G,交CA的延长线于点D.有以下结论①,②,③,④,其中正确的结论是_____.(写出所有正确结论的番号)15.若代数式的值大于﹣1且小于等于2,则x的取值范围是_____.16.八年级(1)班甲、乙两个小组的10名学生进行飞镖训练,某次训练成绩如下:甲组成绩(环)87889乙组成绩(环)98797由上表可知,甲、乙两组成绩更稳定的是________组.17.方程的解为_________.18.甲、乙二人在相同情况下,各射靶次,两人命中环数的方差分别是,,则射击成绩较稳定的是_________.(填“甲”或“乙")三、解答题(共66分)19.(10分)作图题:在△ABC中,点D是AB边的中点,请你过点D作△ABC的中位线DE交AC于点E.(不写作法,保留作图痕迹)20.(6分)先化简再求值,其中x=-1.21.(6分)某校为选拔一名选手参加“美丽江门,我为侨乡做代言”主题演讲比赛,经研究,按下图所示的项目和权数对选拔赛参赛选手进行考评(因排版原因统计图不完整),下表是李明、张华在选拔赛中的得分情况:服装普通话主题演讲技巧李明85708085张华90757580结合以上信息,回答下列问题:(1)求服装项目在选手考评中的权数;(2)根据你所学的知识,帮助学校在李明、张华两人中选择一人参加“美丽江门,我为侨乡做代言”主题演讲比赛,并说明理由.22.(8分)先化简,再求值:当a=7时,求a+的值.23.(8分)为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且(无满分),将其按分数段分为五组,绘制出以下不完整表格:组别成绩(分)频数(人数)频率一2二100.2三12四0.4五6请根据表格提供的信息,解答以下问题:(1)本次决赛共有__________名学生参加;(2)直接写出表中:_______________________(3)请补全右面相应的频数分布直方图;(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为__________.24.(8分)如图,一次函数y=kx+b的图象分别与x轴,y轴的正半轴分別交于点A,B,AB=2,∠OAB=45°(1)求一次函数的解析式;(2)如果在第二象限内有一点C(a,);试用含有a的代数式表示四边形ABCO的面积,并求出当△ABC的面积与△ABO的面积相等时a的值;(3)在x轴上,是否存在点P,使△PAB为等腰三角形?若存在,请直接写出所有符合条件的点P坐标;若不存在,请说明理由.25.(10分)甲、乙两名运动员进行长跑训练,两人距终点的路程(米)与跑步时间(分)之间的函数关系如图所示,根据图象所提供的信息解答问题:(1)他们在进行米的长跑训练,在0<<15的时间内,速度较快的人是(填“甲”或“乙”);(2)求乙距终点的路程(米)与跑步时间(分)之间的函数关系式;(3)当=15时,两人相距多少米?(4)在15<<20的时间段内,求两人速度之差.26.(10分)如图,一次函数y=kx+b的图象经过点A(8,0),直线y=-3x+6与x轴交于点B,与y轴交于点D,且两直线交于点C(4,m).(1)求m的值及一次函数的解析式;(2)求△ACD的面积.

参考答案一、选择题(每小题3分,共30分)1、B【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式的值为零,∴,解得:x=1,故选B.【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.2、A【解析】

按照配方法的步骤和完全平方公式即可得出答案.【详解】即故选:A.【点睛】本题主要考查配方法,掌握配方法和完全平方公式是解题的关键.3、B【解析】

要组成直角三角形,三条线段的比值要满足较小的比值的平方和等于较大比值的平方.结合选项分析即可得到答案.【详解】A.

22+32≠42,故本选项错误;

B.

72+242=252,故本选项正确;

C.

52+122≠142,故本选项错误;

D.

4262≠102,故本选项错误.

故选B.【点睛】本题考查勾股定理的逆定理,解题的关键是掌握勾股定理的逆定理.4、C【解析】

连接BD,根据菱形的性质可得AC⊥BD,AO=AC,然后根据勾股定理计算出BO长,再算出菱形的面积,然后再根据面积公式BC•AE=AC•BD可得答案.【详解】解:连接BD,交AC于O点,

∵四边形ABCD是菱形,

∴AB=BC=CD=AD=5,

∴AC⊥BD,AO=AC,BD=2BO,

∴∠AOB=90°,

∵AC=6,

∴AO=3,

∴BO=,∴DB=8,

∴菱形ABCD的面积是×AC•DB=×6×8=24,

∴BC•AE=24,

AE=,故选C.【点睛】此题主要考查了菱形的性质,以及菱形的性质面积,关键是掌握菱形的对角线互相垂直且平分.5、D【解析】

根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.【详解】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则,如图所示,当直线经过D点,设交AB与N,则,作于点M.与轴形成的角是,轴,,则△DMN为等腰直角三角形,设由勾股定理得,解得,即DM=2则平行四边形的面积是:.故选:D.【点睛】本题考查一次函数与几何综合,解题的关键利用l与m的函数图像判断平行四边形的边长与高.6、C【解析】

易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得=,=,从而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.7、C【解析】

根据轴对称图形和中心对称图形的概念进行判断即可。【详解】解:根据轴对称图形与中心对称图形概念,看图分析得:它是中心对称图形,但不是轴对称图形.故选C.【点睛】本题考查了轴对称图形和中心对称图形的概念:把一个图形沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴;一个图形绕着某个点旋转180°,能够和原来的图形重合,则为中心对称图形.8、D【解析】

根据方差的意义进行判断.【详解】解:∵<<<∴四人中成绩最稳定的是丁.故选:D.【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.9、B【解析】

根据中心对称图形的概念对各选项分析判断即可得解.【详解】、不是中心对称图形,故本选项不符合题意;、是中心对称图形,故本选项符合题意;、不是中心对称图形,故本选项不符合题意;、不是中心对称图形,故本选项不符合题意.故选:.【点睛】本题考查了中心对称图形的概念,解题关键在于中心对称图形是要寻找对称中心,旋转180度后两部分重合.10、A【解析】

根据根的差别式进行判断即可.【详解】解:∵a=1,b=3,c=2,∴∆==1>0∴这个方程有两个不相等的实数根.故选:A.【点睛】本题考查了一元二次方程根的判别式,正确理解根的判别式是解题的关键.二、填空题(每小题3分,共24分)11、2<a<.【解析】分析:根据已知函数的增减性判定3a-7<1,由该函数图象与y轴交点的位置可得a-2>1.详解:∵关于x一次函数y=(3a-7)x+a-2的图象与y轴的交点在x轴的上方,且y随着x的增大而减少,∴,解得2<a<.故答案是:2<a<.点睛:考查了一次函数图象与系数的关系.一次函数y=kx-b(k≠1):函数值y随x的增大而减小⇔k<1;函数值y随x的增大而增大⇔k>1;一次函数y=kx+b图象与y轴的正半轴相交⇔b>1,一次函数y=kx+b图象与y轴的负半轴相交⇔b<1,一次函数y=kx+b图象过原点⇔b=1.12、2.1.【解析】

已知直角三角形的两条直角边,根据勾股定理即可求斜边的长度,根据直角三角形斜边上的中线等于斜边的一半即可解题.【详解】已知直角三角形的两直角边为3、4,则斜边长为1,故斜边上的中线长为:1=2.1.故应填:2.1.【点睛】本题考查了勾股定理和直角三角形斜边上的中线等于斜边的一半的性质,熟练掌握基础知识即可解答.13、【解析】

根据正方形性质可知:正方形的一条角平分线即为对角线,对角线和正方形的两条相邻的边构成等腰直角三角形,根据勾股定理可得正方形的周长.【详解】解:∵正方形的对角线长为2,设正方形的边长为x,∴2x²=(2)²解得:x=2∴正方形的边长为:2故答案为2.【点睛】本题考查了正方形的性质,解题的关键是明确正方形的对角线和正方形的两条相邻的边构成等腰直角三角形.14、①③④.【解析】

如图,作AM⊥y轴于M,AN⊥OE于N.首先证明四边形AMON是正方形,再证明△AMF≌△ANB(ASA),△AMC≌△ANE(ASA),△AFC≌△ABE(SSS)即可解决问题.【详解】解:如图,作AM⊥y轴于M,AN⊥OE于N.

∵A(4,4),

∴AM=AN=4,

∵∠AMO=∠ONA=90°,

∴四边形ANON是矩形,

∵AM=AN,

∴四边形AMON是正方形,

∴OM=ON=4,

∴∠MAN=90°,

∵CD⊥EF,

∴∠FAC=∠MAN=90°,

∴△AMF≌△ANB(ASA),∴FM=BN,

∴OF+OB=OM+FM+ON-BN=2OM=8,故③正确,

同法可证△AMC≌△ANE(ASA),

∴CM=NE,AC=AE,故①正确;

∵FM=BN,

∴CF=BE,

∵AC=AE,AF=AB,

∴△AFC≌△ABE(SSS),

∴S△ABE-S△BOC=S△AFC-S△BOC=S四边形ABOF=S正方形AMON=16,故④正确,当BE为定值时,点P是动点,故PC≠BE,故②错误,

故答案为①③④.【点睛】本题考查三角形的面积、坐标与图形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15、﹣1≤x<1.【解析】

先根据题意得出关于x的不等式组,求出x的取值范围即可.【详解】解:根据题意,得:解不等式①,得:x<1,

解不等式②,得:x≥-1,

所以-1≤x<1,

故答案为:-1≤x<1.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16、甲【解析】

根据方差计算公式,进行计算,然后比较方差,小的稳定,在计算方差之前还需先计算平均数.【详解】=8,=8,[(8-8)2+(7-8)2+(8-8)2+(8-8)2+(9-8)2]=0.4,[(9-8)2+(8-8)2+(7-8)2+(9-8)2+(7-8)2]=0.8∵<∴甲组成绩更稳定.故答案为:甲.【点睛】考查平均数、方差的计算方法,理解方差是反映一组数据的波动大小的统计量,方差越小,数据越稳定.17、【解析】

此题采用因式分解法最简单,解题时首先要观察,然后再选择解题方法.配方法与公式法适用于所用的一元二次方程,因式分解法虽有限制,却最简单.【详解】∵∴∴∴∴故答案为:.【点睛】此题考查解一元二次方程-配方法,解题关键在于掌握运算法则.18、乙【解析】

根据方差的意义解答即可.【详解】方差反映了数据的离散程度,方差越小,成绩越稳定,故射击成绩比较稳定的是乙.故答案为:乙.【点睛】本题主要考查了方差的意义,清楚方差反映了数据的离散程度,方差越小,数据越稳定是解题的关键.三、解答题(共66分)19、如图所示,线段DE即为所求,见解析.【解析】

作AC的垂直平分线,再连接DE即可.【详解】如图所示,线段DE即为所求:【点睛】此题考查作图问题,关键是根据垂直平分线的作图解答.20、.【解析】原式.当时,原式21、(1)服装在考评中的权数为10%;(2)选择李明参加比赛,理由是李明的总成绩高.【解析】

(1)所有项目所占的总权数为100%,从100%中减去其它几个项目的权数即可,(2)计算李明、张华的总成绩,即加权平均数后,比较得出答案.【详解】(1)服装在考评中的权数为:1-20%-30%-40%=10%,答:服装在考评中的权数为10%.(2)选择李明参加比赛,李明的总成绩为:85×10%+70×20%+80×30%+85×40%=80.5分,张华的成绩为:90×10%+75×20%+75×30%+80×40%=78.5分,因为80.5>78.5,所以李明成绩较好,选择李明成绩比赛.答:选择李明参加比赛,理由是李明的总成绩高.【点睛】考查加权平均数的意义及计算方法,理解加权平均数的意义,掌握加权平均数的计算方法是解决问题的关键.22、,13【解析】

先根据二次根式的性质把原式进行化简,再把a的值代入进行计算即可.【详解】原式=当a=7时,原式=【点睛】本题考查的是二次根式的性质化简求值,熟知二次根式的性质是解答此题的关键.23、解:(1)50;(2)20,0.24;(3)见详解;(4)52%.【解析】

(1)用第二组的频数除以它所占的频率得到调查的总人数;

(2)用第四组的频率乘以样本容量得到a的值,用第三组的频数除以样本容量得到b的值;

(3)利用a的值补全频数分布直方图;

(4)用第四组和第五组的频数和除以样本容量即可.【详解】解:解:(1)10÷0.2=50,

所以本次决赛共有50名学生参加;

(2)a=50×0.4=20,b==0.24;

故答案为50;20;0.24;

(3)补全频数分布直方图为:

(4)本次大赛的优秀率=×100%=52%.

故答案为50;20;0.24;52%.【点睛】本题考查了频数(率)分布直方图:能从频数分布直方图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24、(1)一次函数解析式为

y=-x+1(1)a=−(3)存在,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).【解析】

(1)根据勾股定理求出A、B两点坐标,利用待定系数法即可解决问题;

(1)根据S四边形ABCD=S△AOB+S△BOC计算即可,列出方程即可求出a的值;

(3)分三种情形讨论即可解决问题;【详解】(1)在

Rt△ABO中,∠OAB=45°,

∴∠OBA=∠OAB-∠OAB=90°-45°=45°

∴∠OBA=∠OAB

∴OA=OB

∴OB1+OA1=AB1即:1OB1=(1)1,

∴OB=OA=1

∴点A(1,0),B(0,1).

∴解得:

∴一次函数解析式为

y=-x+1.

(1)如图,

∵S△AOB=×1×1=1,S△BOC=×1×|a|=-a,

∴S四边形ABCD=S△AOB+S△BOC=1-a,

∵S△ABC=S四边形ABCO-S△AOC=1-a-×1×=-a,

当△ABC的面积与△ABO面积相等时,−a=1,解得a=−.

(3)在x轴上,存在点P,使△PAB为等腰三角形

①当PA=PB时,P(0,0),

②当BP=BA时,P(-1,0),

③当AB=AP时,P(1-1,0)或(1+1,0),

综上所述,满足条件的点P的坐标为(0,0)或(1−1,0)或(1+1,0)或(-1,0).【点睛】本题考查一次函数综合题、解直角三角形、待定系数法、等腰三角形的判定和性质、三角形的面积等知识,解题的关键是学会圆分割法求多边形面积,学会用分类讨论的思想思考问题,属于中考常考题型.25、(1)5000;甲;(2);(3)750米;(4)150米/分.【解析】

(1)根据x=0时,y=5000可知,他们在进行5000米的长跑训练,在0<<15的时间内,,所以甲跑的快;(2)分段求解析式,在0<<15的时间内,由点(0,5000),(15,2000)来求解析式;在15≤≤20的时间内,由点(15,2000),(20,0)来求解析式;(3)根据题意求得甲的速度为250米/分,然后计算甲距离终点的路程,再计算他们的距离;(4)在15<<20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论