2024届浙江省嘉兴市南湖区实验达标名校中考试题猜想数学试卷含解析_第1页
2024届浙江省嘉兴市南湖区实验达标名校中考试题猜想数学试卷含解析_第2页
2024届浙江省嘉兴市南湖区实验达标名校中考试题猜想数学试卷含解析_第3页
2024届浙江省嘉兴市南湖区实验达标名校中考试题猜想数学试卷含解析_第4页
2024届浙江省嘉兴市南湖区实验达标名校中考试题猜想数学试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届浙江省嘉兴市南湖区实验达标名校中考试题猜想数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.计算的结果是(

)A. B. C. D.22.在实数π,0,,﹣4中,最大的是()A.π B.0 C. D.﹣43.的相反数是()A. B.2 C. D.4.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.105.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50° B.60° C.70° D.80°6.如图,空心圆柱体的左视图是()A. B. C. D.7.有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①② B.①④ C.②③ D.③④8.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处 B.2处 C.3处 D.4处10.关于x的方程(a﹣1)x|a|+1﹣3x+2=0是一元二次方程,则()A.a≠±1 B.a=1 C.a=﹣1 D.a=±1二、填空题(本大题共6个小题,每小题3分,共18分)11.两个反比例函数y=kx和y=1x在第一象限内的图象如图所示,点P在y=kx的图象上,PC⊥x轴于点C,交12.如图,已知l1∥l2∥l3,相邻两条平行直线间的距离相等.若等腰直角三角形ABC的直角顶点C在l1上,另两个顶点A、B分别在l3、l2上,则tanα的值是______.13.如图,a∥b,∠1=110°,∠3=40°,则∠2=_____°.14.已知直线与抛物线交于A,B两点,则_______.15.﹣的绝对值是_____.16.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A. B. C. D.三、解答题(共8题,共72分)17.(8分)数学兴趣小组为了研究中小学男生身高y(cm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.年龄组x7891011121314151617男生平均身高y115.2118.3122.2126.5129.6135.6140.4146.1154.8162.9168.2(1)该市男学生的平均身高从岁开始增加特别迅速.(2)求直线AB所对应的函数表达式.(3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?18.(8分)解不等式组并在数轴上表示解集.19.(8分)先化简,再求值:(+)÷,其中x=20.(8分)如图,AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:PC=PF;(3)若tan∠ABC=,AB=14,求线段PC的长.21.(8分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.22.(10分)全面两孩政策实施后,甲,乙两个家庭有了各自的规划.假定生男生女的概率相同,回答下列问题:甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是;乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.23.(12分)观察下列等式:第1个等式:a1=-1,第2个等式:a2=,第3个等式:a3==2-,第4个等式:a4=-2,…按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.24.列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】

化简二次根式,并进行二次根式的乘法运算,最后合并同类二次根式即可.【详解】原式=3﹣2·=3﹣=.故选C.【点睛】本题主要考查二次根式的化简以及二次根式的混合运算.2、C【解析】

根据实数的大小比较即可得到答案.【详解】解:∵16<17<25,∴4<<5,∴>π>0>-4,故最大的是,故答案选C.【点睛】本题主要考查了实数的大小比较,解本题的要点在于统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.3、D【解析】

因为-+=0,所以-的相反数是.故选D.4、B【解析】

根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【详解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故选B.5、C【解析】

解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【点睛】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.6、C【解析】

根据从左边看得到的图形是左视图,可得答案.【详解】从左边看是三个矩形,中间矩形的左右两边是虚线,故选C.【点睛】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.7、B【解析】分析:本题是考察数轴上的点的大小的关系.解析:由图知,b<0<a,故①正确,因为b点到原点的距离远,所以|b|>|a|,故②错误,因为b<0<a,所以ab<0,故③错误,由①知a-b>a+b,所以④正确.故选B.8、B【解析】

由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,

∴函数经过一、三、四象限,不经过第二象限故选B【点睛】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响9、D【解析】

到三条相互交叉的公路距离相等的地点应是三条角平分线的交点.把三条公路的中心部位看作三角形,那么这个三角形两个内角平分线的交点以及三个外角两两平分线的交点都满足要求.【详解】满足条件的有:(1)三角形两个内角平分线的交点,共一处;(2)三个外角两两平分线的交点,共三处.如图所示,故选D.【点睛】本题考查了角平分线的性质;这是一道生活联系实际的问题,解答此类题目时最直接的判断就是三角形的角平分线,很容易漏掉外角平分线,解答时一定要注意,不要漏解.10、C【解析】

根据一元一次方程的定义即可求出答案.【详解】由题意可知:,解得a=−1故选C.【点睛】本题考查一元二次方程的定义,解题的关键是熟练运用一元二次方程的定义,本题属于基础题型.二、填空题(本大题共6个小题,每小题3分,共18分)11、①②④.【解析】①△ODB与△OCA的面积相等;正确,由于A、B在同一反比例函数图象上,则两三角形面积相等,都为12②四边形PAOB的面积不会发生变化;正确,由于矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化.③PA与PB始终相等;错误,不一定,只有当四边形OCPD为正方形时满足PA=PB.④当点A是PC的中点时,点B一定是PD的中点.正确,当点A是PC的中点时,k=2,则此时点B也一定是PD的中点.故一定正确的是①②④12、【解析】如图,分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D.∵△ABC为等腰直角三角形,∴AC=BC,∠ACB=90°,∴∠ACE+∠BCF=90°.∵AE⊥,BF⊥∴∠CAE+∠ACE=90°,∠CBF+∠BCF=90°,∴∠CAE=∠BCF,∠ACE=∠CBF.∵∠CAE=∠BCF,AC=BC,∠ACE=∠CBF,∴△ACE≌△CBF,∴CE=BF,AE=CF.设平行线间距离为d=l,则CE=BF=BD=1,AE=CF=2,AD=EF=CE+CF=3,∴tanα=tan∠BAD==.点睛:分别过点A,B作AE⊥,BF⊥,BD⊥,垂足分别为E,F,D,可根据ASA证明△ACE≌△CBF,设平行线间距离为d=1,进而求出AD、BD的值;本题考查了全等三角形的判定和锐角三角函数,解题的关键是合理添加辅助线构造全等三角形;13、1【解析】试题解析:如图,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案为:1.14、【解析】

将一次函数解析式代入二次函数解析式中,得出关于x的一元二次方程,根据根与系数的关系得出“x+x=-=,xx==-1”,将原代数式通分变形后代入数据即可得出结论.【详解】将代入到中得,,整理得,,∴,,∴.【点睛】此题考查了二次函数的性质和一次函数的性质,解题关键在于将一次函数解析式代入二次函数解析式15、【解析】

绝对值是指一个数在数轴上所对应点到原点的距离,用“|

|”来表示.|b-a|或|a-b|表示数轴上表示a的点和表示b的点的距离.【详解】﹣的绝对值是|﹣|=【点睛】本题考查的是绝对值,熟练掌握绝对值的定义是解题的关键.16、A【解析】

该班男生有x人,女生有y人.根据题意得:,故选D.考点:由实际问题抽象出二元一次方程组.三、解答题(共8题,共72分)17、(1)11;(2)y=3.6x+90;(3)该市18岁男生年龄组的平均身高大约是174cm左右.【解析】

(1)根据统计图仔细观察即可得出结果(2)先设函数表达式,选取两个点带入求值即可(3)先设函数表达式,选取两个点带入求值,把带入预测即可.【详解】解:(1)由统计图可得,该市男学生的平均身高从11岁开始增加特别迅速,故答案为:11;(2)设直线AB所对应的函数表达式∵图象经过点则,解得.即直线AB所对应的函数表达式:(3)设直线CD所对应的函数表达式为:,,得,即直线CD所对应的函数表达式为:把代入得即该市18岁男生年龄组的平均身高大约是174cm左右.【点睛】此题重点考察学生对统计图和一次函数的应用,熟练掌握一次函数表达式的求法是解题的关键.18、﹣<x≤0,不等式组的解集表示在数轴上见解析.【解析】

先求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解不等式2x+1>0,得:x>﹣,解不等式,得:x≤0,则不等式组的解集为﹣<x≤0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”.19、-【解析】

先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【详解】原式=[+]÷=[-+]÷=·=,当x=时,原式==-.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20、(1)(2)证明见解析;(3)1.【解析】

(1)由PD切⊙O于点C,AD与过点C的切线垂直,易证得OC∥AD,继而证得AC平分∠DAB;

(2)由条件可得∠CAO=∠PCB,结合条件可得∠PCF=∠PFC,即可证得PC=PF;

(3)易证△PAC∽△PCB,由相似三角形的性质可得到,又因为tan∠ABC=,所以可得=,进而可得到=,设PC=4k,PB=3k,则在Rt△POC中,利用勾股定理可得PC2+OC2=OP2,进而可建立关于k的方程,解方程求出k的值即可求出PC的长.【详解】(1)证明:∵PD切⊙O于点C,∴OC⊥PD,又∵AD⊥PD,∴OC∥AD,∴∠ACO=∠DAC.∵OC=OA,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB;(2)证明:∵AD⊥PD,∴∠DAC+∠ACD=90°.又∵AB为⊙O的直径,∴∠ACB=90°.∴∠PCB+∠ACD=90°,∴∠DAC=∠PCB.又∵∠DAC=∠CAO,∴∠CAO=∠PCB.∵CE平分∠ACB,∴∠ACF=∠BCF,∴∠CAO+∠ACF=∠PCB+∠BCF,∴∠PFC=∠PCF,∴PC=PF;(3)解:∵∠PAC=∠PCB,∠P=∠P,∴△PAC∽△PCB,∴.又∵tan∠ABC=,∴,∴,设PC=4k,PB=3k,则在Rt△POC中,PO=3k+7,OC=7,∵PC2+OC2=OP2,∴(4k)2+72=(3k+7)2,∴k=6(k=0不合题意,舍去).∴PC=4k=4×6=1.【点睛】此题考查了和圆有关的综合性题目,用到的知识点有:切线的性质、相似三角形的判定与性质、垂径定理、圆周角定理、勾股定理以及等腰三角形的判定与性质.21、(1)y=;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.试题解析:(1)∵反比例函数y=(m≠0)的图象过点A(1,1),∴1=∴m=1.∴反比例函数的表达式为y=.∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).∴,解得:,∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=1,PC×1+PC×2=1.∴PC=2,∴点P的坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论