版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年云南省楚雄州高三(最后冲刺)数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图:记为每个序列中最后一列数之和,则为()A.147 B.294 C.882 D.17642.已知函数,若函数的图象恒在轴的上方,则实数的取值范围为()A. B. C. D.3.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随意向这张白纸上投放一根这样的针,则针落地后与直线相交的概率约为()A. B. C. D.4.由实数组成的等比数列{an}的前n项和为Sn,则“a1>0”是“S9>S8”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知实数,满足约束条件,则的取值范围是()A. B. C. D.6.集合的真子集的个数是()A. B. C. D.7.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为()A. B. C. D.8.已知向量,是单位向量,若,则()A. B. C. D.9.设复数满足,在复平面内对应的点为,则不可能为()A. B. C. D.10.偶函数关于点对称,当时,,求()A. B. C. D.11.若复数满足,则对应的点位于复平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.设i是虚数单位,若复数是纯虚数,则a的值为()A. B.3 C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知实数,满足则的取值范围是______.14.已知等比数列满足,,则该数列的前5项的和为______________.15.已知数列的各项均为正数,记为数列的前项和,若,,则______.16.在的二项展开式中,只有第5项的二项式系数最大,则该二项展开式中的常数项等于_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)中,内角的对边分别为,.(1)求的大小;(2)若,且为的重心,且,求的面积.18.(12分)设函数.(1)当时,解不等式;(2)若的解集为,,求证:.19.(12分)某企业为了了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.(1)求这个样本数据的中位数和众数;(2)以这个样本数据中优秀员工的频率作为概率,任意调查名工人,求被调查的名工人中优秀员工的数量分布列和数学期望.20.(12分)已知,分别是椭圆:的左,右焦点,点在椭圆上,且抛物线的焦点是椭圆的一个焦点.(1)求,的值:(2)过点作不与轴重合的直线,设与圆相交于A,B两点,且与椭圆相交于C,D两点,当时,求△的面积.21.(12分)随着互联网金融的不断发展,很多互联网公司推出余额增值服务产品和活期资金管理服务产品,如蚂蚁金服旗下的“余额宝”,腾讯旗下的“财富通”,京东旗下“京东小金库”.为了调查广大市民理财产品的选择情况,随机抽取1200名使用理财产品的市民,按照使用理财产品的情况统计得到如下频数分布表:分组频数(单位:名)使用“余额宝”使用“财富通”使用“京东小金库”30使用其他理财产品50合计1200已知这1200名市民中,使用“余额宝”的人比使用“财富通”的人多160名.(1)求频数分布表中,的值;(2)已知2018年“余额宝”的平均年化收益率为,“财富通”的平均年化收益率为.若在1200名使用理财产品的市民中,从使用“余额宝”和使用“财富通”的市民中按分组用分层抽样方法共抽取7人,然后从这7人中随机选取2人,假设这2人中每个人理财的资金有10000元,这2名市民2018年理财的利息总和为,求的分布列及数学期望.注:平均年化收益率,也就是我们所熟知的利息,理财产品“平均年化收益率为”即将100元钱存入某理财产品,一年可以获得3元利息.22.(10分)如图,过点且平行与x轴的直线交椭圆于A、B两点,且.(1)求椭圆的标准方程;(2)过点M且斜率为正的直线交椭圆于段C、D,直线AC、BD分别交直线于点E、F,求证:是定值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.2、B【解析】
函数的图象恒在轴的上方,在上恒成立.即,即函数的图象在直线上方,先求出两者相切时的值,然后根据变化时,函数的变化趋势,从而得的范围.【详解】由题在上恒成立.即,的图象永远在的上方,设与的切点,则,解得,易知越小,图象越靠上,所以.故选:B.【点睛】本题考查函数图象与不等式恒成立的关系,考查转化与化归思想,首先函数图象转化为不等式恒成立,然后不等式恒成立再转化为函数图象,最后由极限位置直线与函数图象相切得出参数的值,然后得出参数范围.3、D【解析】
根据统计数据,求出频率,用以估计概率.【详解】.故选:D.【点睛】本题以数学文化为背景,考查利用频率估计概率,属于基础题.4、C【解析】
根据等比数列的性质以及充分条件和必要条件的定义进行判断即可.【详解】解:若{an}是等比数列,则,
若,则,即成立,
若成立,则,即,
故“”是“”的充要条件,
故选:C.【点睛】本题主要考查充分条件和必要条件的判断,利用等比数列的通项公式是解决本题的关键.5、B【解析】
画出可行域,根据可行域上的点到原点距离,求得的取值范围.【详解】由约束条件作出可行域是由,,三点所围成的三角形及其内部,如图中阴影部分,而可理解为可行域内的点到原点距离的平方,显然原点到所在的直线的距离是可行域内的点到原点距离的最小值,此时,点到原点的距离是可行域内的点到原点距离的最大值,此时.所以的取值范围是.故选:B【点睛】本小题考查线性规划,两点间距离公式等基础知识;考查运算求解能力,数形结合思想,应用意识.6、C【解析】
根据含有个元素的集合,有个子集,有个真子集,计算可得;【详解】解:集合含有个元素,则集合的真子集有(个),故选:C【点睛】考查列举法的定义,集合元素的概念,以及真子集的概念,对于含有个元素的集合,有个子集,有个真子集,属于基础题.7、B【解析】
分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果.【详解】从“八音”中任取不同的“两音”共有种取法;“两音”中含有打击乐器的取法共有种取法;所求概率.故选:.【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.8、C【解析】
设,根据题意求出的值,代入向量夹角公式,即可得答案;【详解】设,,是单位向量,,,,联立方程解得:或当时,;当时,;综上所述:.故选:C.【点睛】本题考查向量的模、夹角计算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意的两种情况.9、D【解析】
依题意,设,由,得,再一一验证.【详解】设,因为,所以,经验证不满足,故选:D.【点睛】本题主要考查了复数的概念、复数的几何意义,还考查了推理论证能力,属于基础题.10、D【解析】
推导出函数是以为周期的周期函数,由此可得出,代值计算即可.【详解】由于偶函数的图象关于点对称,则,,,则,所以,函数是以为周期的周期函数,由于当时,,则.故选:D.【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.11、D【解析】
利用复数模的计算、复数的除法化简复数,再根据复数的几何意义,即可得答案;【详解】,对应的点,对应的点位于复平面的第四象限.故选:D.【点睛】本题考查复数模的计算、复数的除法、复数的几何意义,考查运算求解能力,属于基础题.12、D【解析】
整理复数为的形式,由复数为纯虚数可知实部为0,虚部不为0,即可求解.【详解】由题,,因为纯虚数,所以,则,故选:D【点睛】本题考查已知复数的类型求参数范围,考查复数的除法运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据约束条件画出可行域,即可由直线的平移方法求得的取值范围.【详解】.由题意,画出约束条件表示的平面区域如下图所示,令,则如图所示,图中直线所示的两个位置为的临界位置,根据几何关系可得与轴的两个交点分别为,所以的取值范围为.故答案为:【点睛】本题考查了非线性约束条件下线性规划的简单应用,由数形结合法求线性目标函数的取值范围,属于中档题.14、31【解析】设,可化为,得,,,15、63【解析】
对进行化简,可得,再根据等比数列前项和公式进行求解即可【详解】由数列为首项为,公比的等比数列,所以63【点睛】本题考查等比数列基本量的求法,当处理复杂因式时,常用基本方法为:因式分解,约分。但解题本质还是围绕等差和等比的基本性质16、1【解析】
由题意可得,再利用二项展开式的通项公式,求得二项展开式常数项的值.【详解】的二项展开式的中,只有第5项的二项式系数最大,,通项公式为,令,求得,可得二项展开式常数项等于,故答案为1.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】
(1)利用正弦定理,转化为,分析运算即得解;(2)由为的重心,得到,平方可得解c,由面积公式即得解.【详解】(1)由,由正弦定理得C,即∴∵∴,又∵∴(2)由于为的重心故,∴解得或舍∴的面积为.【点睛】本题考查了正弦定理和余弦定理的综合应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.18、(1);(2)见解析.【解析】
(1)当时,将所求不等式变形为,然后分、、三段解不等式,综合可得出原不等式的解集;(2)先由不等式的解集求得实数,可得出,将代数式变形为,将与相乘,展开后利用基本不等式可求得的最小值,进而可证得结论.【详解】(1)当时,不等式为,且.当时,由得,解得,此时;当时,由得,该不等式不成立,此时;当时,由得,解得,此时.综上所述,不等式的解集为;(2)由,得,即或,不等式的解集为,故,解得,,,,,当且仅当,时取等号,.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式,考查推理能力与计算能力,属于中等题.19、(1)43,47;(2)分布列见解析,.【解析】
(1)根据茎叶图即可得到中位数和众数;(2)根据数据可得任取一名优秀员工的概率为,故,写出分布列即可得解.【详解】(1)中位数为,众数为.(2)被调查的名工人中优秀员工的数量,任取一名优秀员工的概率为,故,,,的分布列如下:故【点睛】此题考查根据茎叶图求众数和中位数,求离散型随机变量分布列,根据分布列求解期望,关键在于准确求解概率,若能准确识别二项分布对于解题能够起到事半功倍的作用.20、(1);(2).【解析】
(1)由已知根据抛物线和椭圆的定义和性质,可求出,;(2)设直线方程为,联立直线与圆的方程可以求出,再联立直线和椭圆的方程化简,由根与系数的关系得到结论,继而求出面积.【详解】(1)焦点为F(1,0),则F1(1,0),F2(1,0),,解得,=1,=1,(Ⅱ)由已知,可设直线方程为,,联立得,易知△>0,则===因为,所以=1,解得联立,得,△=8>0设,则【点睛】本题主要考查抛物线和椭圆的定义与性质应用,同时考查利用根与系数的关系,解决直线与圆,直线与椭圆的位置关系问题.意在考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《BTA参与的不同复配体系涂层对铜的防腐蚀效果的影响》
- 2024年环保节能产品代理销售合同范本3篇
- 2025注册公司租房合同范本下载
- 2025电梯维修保养合同
- 2025劳动合同订立的时间
- 2024年电梯安装工程劳务分包合同(含质量保证条款)
- 2025关于饭店员工合同协议书
- 2025消费贷款借款合同
- 丝印机项目投资计划
- 筛分仪项目立项申请报告
- 30题战略规划岗位常见面试问题含HR问题考察点及参考回答
- 小学数学指向核心素养的单元整体教学
- 喷淋、消火栓试压记录表
- 学校精准扶贫工作计划
- 工业产品质量安全风险管控清单
- 【幼儿生活环节中数学思维能力培养研究5500字(论文)】
- 大额保单操作实务
- 限制被执行人驾驶令申请书
- 皮带输送机巡检规程
- 辽宁省大连市沙河口区2022-2023学年七年级上学期期末语文试题(含答案)
- 华为DSTE战略管理体系完整版
评论
0/150
提交评论