




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024年安徽省濉溪县八年级数学第二学期期末学业水平测试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.对于函数y=﹣2x+2,下列结论:①当x>1时,y<0;②它的图象经过第一、二、四象限;③它的图象必经过点(﹣1,2);④y的值随x的增大而增大,其中正确结论的个数是()A.1B.2C.3D.42.将一张矩形纸片按照如图所示的方式折叠,然后沿虚线AB将阴影部分剪下,再将剪下的阴影部分纸片展开,所得到的平面图形是()A.直角三角形 B.等腰三角形 C.矩形 D.菱形3.当分式有意义时,则x的取值范围是()A.x≠2 B.x≠-2 C.x≠ D.x≠-4.某次文艺演中若干名评委对八(1)班节目给出评分.在计算中去掉一个最高分和最低分.这种操作,对数据的下列统计一定不会影响的是()A.平均数 B.中位数 C.众数 D.方差5.一个正比例函数的图象经过(1,﹣3),则它的表达式为()A.y=﹣3x B.y=3x C.y=-3x D.y=﹣6.已知一组数据5,5,6,6,6,7,7,则这组数据的方差为()A. B. C. D.67.如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.8.点3,-4到y轴的距离为()A.3 B.4 C.5 D.-49.已知点在函数的图象上,则A.5 B.10 C. D.10.若正比例函数的图象经过点(2,4),则这个图象也必经过点()A.(2,1) B.(﹣1,﹣2) C.(1,﹣2) D.(4,2)二、填空题(每小题3分,共24分)11.如图,函数y1=﹣2x和y2=ax+3的图象相交于点A(﹣1,2),则关于x的不等式﹣2x>ax+3的解集是_____12.如图.△ABC中,AC的垂直平分线分别交AC、AB于点D.F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是_____13.己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.14.在实数范围内定义一种运算“﹡”,其规则为a﹡b=a2﹣b2,根据这个规则,方程(x+1)﹡3=0的解为_____.15.如图,一次函数与的图的交点坐标为(2,3),则关于的不等式的解集为_____.16.如图,在平面直角坐标系中,A(4,0),B(0,3),以点A为圆心,AB长为半径画弧,交x轴的负半轴于点C,则点C坐标为______.17.平行四边形的面积等于,两对角线的交点为,过点的直线分别交平行四边形一组对边、于点、,则四边形的面积等于________。18.在△MBN中,BM=6,BN=7,MN=10,点A、C、D分别是MB、NB、MN的中点,则四边形ABCD的周长是_______;三、解答题(共66分)19.(10分)如图,点E、F分别是▱ABCD的边BC、AD上的点,且BE=DF.(1)试判断四边形AECF的形状;(2)若AE=BE,∠BAC=90°,求证:四边形AECF是菱形.20.(6分)化简求值:,其中a=1.21.(6分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB上一点,过点D作DE⊥BC,交直线MN于点E,垂足为F,连接CD,BE.(1)当点D是AB的中点时,四边形BECD是什么特殊四边形?说明你的理由.(2)在(1)的条件下,当∠A=__________°时,四边形BECD是正方形.22.(8分)如图,在△ABC中,AB=AC,∠BAC=120°,E为BC上一点,以CE为直径作⊙O恰好经过A、C两点,PF⊥BC交BC于点G,交AC于点F.(1)求证:AB是⊙O的切线;(2)如果CF=2,CP=3,求⊙O的直径EC.23.(8分)将矩形ABCD折叠使点A,C重合,折痕交BC于点E,交AD于点F,可以得到四边形AECF是一个菱形,若AB=4,BC=8,求菱形AECF的面积.24.(8分)如图,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB,PE与DC交于点O.(基础探究)(1)求证:PD=PE.(2)求证:∠DPE=90°(3)(应用拓展)把正方形ABCD改为菱形,其他条件不变(如图),若PE=3,则PD=________;若∠ABC=62°,则∠DPE=________.25.(10分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:小明小英思想表现9198学习成绩9696工作能力989126.(10分)某校八年级两个班,各选派10名学生参加学校举行的“建模”大赛预赛,各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:班级最高分平均分中位数众数方差八(1)班100939312八(2)班99958.4(1)直接写出表中、、的值为:_____,_____,_____;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好.”但也有人说(2)班的成绩要好.请给出两条支持八(2)班成绩好的理由;(3)学校从平均数、中位数、众数、方差中选取确定了一个成绩,等于或大于这个成绩的学生被评定为“优秀”等级,如果八(2)班有一半的学生能够达到“优秀”等级,你认为这个成绩应定为_____分.
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据一次函数的系数,结合一次函数的性质,逐个分析即可得.【详解】①∵k=﹣2<0,∴一次函数中y随x的增大而减小.∵令y=﹣2x+2中x=1,则y=0,∴当x>1时,y<0成立,即①正确;②∵k=﹣2<0,b=2>0,∴一次函数的图象经过第一、二、四象限,即②正确;③令y=﹣2x+2中x=﹣1,则y=4,∴一次函数的图象不过点(﹣1,2),即③不正确;④∵k=﹣2<0,∴一次函数中y随x的增大而减小,④不正确.故选:B【点睛】本题考核知识点:一次函数性质.解题关键点:熟记一次函数基本性质.2、D【解析】
解答该类剪纸问题,通过自己动手操作即可得出答案;或者通过折叠的过程可以发现:该四边形的对角线互相垂直平分,继而进行判断.【详解】解:易得阴影部分展开后是一个四边形,
∵四边形的对角线互相平分,
∴是平行四边形,
∵对角线互相垂直,
∴该平行四边形是菱形,
故选:D.【点睛】本题主要考查了剪纸问题,学生的分析能力,培养学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.3、B【解析】
根据分母不为零列式求解即可.【详解】分式中分母不能为0,所以,3x+6≠0,解得:x≠-2,故选B.【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:①分式无意义⇔分母为零;②分式有意义⇔分母不为零;③分式值为零⇔分子为零且分母不为零.4、B【解析】
根据平均数、中位数、方差及众数的意义分别判断后即可确定正确的选项.【详解】解:去掉一个最高分和一个最低分一定会影响到平均数、方差,可能会影响到众数,一定不会影响到中位数,故选B.【点睛】本题考查了统计量的选择,解题的关键是了解平均数、中位数、方差及众数的意义,难度不大.5、A【解析】
设正比例函数解析式为y=kx(k≠0),然后将点(1,-3)代入该函数解析式即可求得k的值.【详解】设正比例函数解析式为y=kx(k≠0).则根据题意,得﹣3=k,解得k=﹣3∴正比例函数的解析式为:y=﹣3x故选A.【点睛】本题考查了待定系数法求正比例函数解析式.此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.6、A【解析】
先求出这组数据的平均数,然后代入方差计算公式求出即可.【详解】解:∵平均数=(5+5+6+6+6+7+7)=6,S2=[(5-6)2+(5-6)2+(6-6)2+(6-6)2+(6-6)2+(7-6)2+(7-6)2]=.故选:A.【点睛】本题考查方差的定义,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7、A【解析】
取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.【点睛】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.8、A【解析】
根据点到y轴的距离是点的横坐标的绝对值,可得答案.【详解】解:点的坐标(3,-4),它到y轴的距离为|3|=3,故选:A.【点睛】本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.9、B【解析】
根据已知点在函数的图象上,将点代入可得:.【详解】因为点在函数的图象上,所以,故选B.【点睛】本题主要考查一次函数图象上点的特征,解决本题的关键是要熟练掌握一次函数图象上点的特征.10、B【解析】
设正比例函数解析式y=kx,将点(2,4)代入可求函数解析式y=2x,再结合选项进行判断即可.【详解】∵正比例函数的图象经过点(2,4),设正比例函数解析式y=kx,将点(2,4)代入可得k=2,∴函数解析式y=2x,将选项中点代入,可以判断(﹣1,﹣2)在函数图象上;故选:B.【点睛】考查正比例函数的图象及性质;熟练掌握函数图象的性质,会用待定系数法求函数解析式是解题的关键.二、填空题(每小题3分,共24分)11、x<﹣1.【解析】
以交点为分界,结合图象写出不等式-2x>ax+3的解集即可.【详解】解:∵函数y1=-2x和y2=ax+3的图象相交于点A(-1,2),∴不等式-2x>ax+3的解集为x<-1.故答案为x<-1.【点睛】此题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12、2【解析】
由AF=BF得到F为AB的中点,又DF垂直平分AC,得到D为AC的中点,可得出DF为三角形ABC的中位线,根据三角形中位线定理得到DF平行于CB,且DF等于BC的一半,由BC的长求出DF的长,由两直线平行同旁内角互补得到∠C=90°,同时由DE与EB垂直,ED与DC垂直,根据垂直的定义得到两个角都为直角,利用三个角为直角的四边形为矩形得到四边形BCDE为矩形,在直角三角形ADF中,利用锐角三角函数定义及特殊角的三角函数值,由∠A=30°,DF的长,求出AD的长,即为DC的长,由矩形的长BC于宽CD的乘积即可求出矩形BCED的面积.【详解】∵AF=BF,即F为AB的中点,又DE垂直平分AC,即D为AC的中点,∴DF为三角形ABC的中位线,∴DE∥BC,DF=BC,又∠ADF=90°,∴∠C=∠ADF=90°,又BE⊥DE,DE⊥AC,∴∠CDE=∠E=90°,∴四边形BCDE为矩形,∵BC=2,∴DF=BC=1,在Rt△ADF中,∠A=30°,DF=1,∴tan30°=,即AD=,∴CD=AD=,则矩形BCDE的面积S=CD⋅BC=2.故答案为2【点睛】此题考查矩形的判定与性质,全等三角形的判定与性质,线段垂直平分线的性质,含30度角的直角三角形,解题关键在于求出四边形BCDE为矩形13、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.14、x=2、-4【解析】
先根据新定义得到,再移项得,然后利用直接开平方法求解.【详解】(x+1)﹡3=0,,,,所以、.故答案为:、.【点睛】本题考查了解一元二次方程-直接开平方法:如果方程化成的形式,那么可得,如果方程能化成()的形式,那么.15、x<2.【解析】
根据不等式与函数的关系由图像直接得出即可.【详解】由图可得关于的不等式的解集为x<2.故填:x<2.【点睛】此题主要考查函数与不等式的关系,解题的关键是熟知函数的性质.16、(﹣1,0)【解析】
根据勾股定理求出AB的长,由AB=AC即可求出C点坐标.【详解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴点C的横坐标为:4-5=-1,纵坐标为:0,∴点C的坐标为(-1,0).故答案为(-1,0).【点睛】本题考查了勾股定理和坐标与图形性质的应用,解此题的关键是求出的长,注意:在直角三角形中,两直角边的平方和等于斜边的平方.17、【解析】
根据“过平行四边形对角线的交点的直线将平行四边形等分为两部分”解答即可.【详解】如图平行四边形ABCD,∵四边形ABCD是平行四边形,∴OD=OB,OA=OC,则可得:△DF0≌△BEO,△ADO≌△CBO,△CF0≌△AEO,∴直线l将四边形ABCD的面积平分.∵平行四边形ABCD的面积等于10cm2,∴四边形AEFD的面积等于5cm2,故答案为:5cm2【点睛】本题考查了中心对称,全等三角形的判定与性质,解答本题的关键在于举例说明,利用全等的知识解决.18、13【解析】∵点A,C,D分别是MB,NB,MN的中点,∴CD∥AB,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC.∵BM=6,BN=7,MN=10,点A,C分别是MB,NB的中点,∴AB=3,BC=3.5,∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.三、解答题(共66分)19、(1)四边形AECF为平行四边形;(2)见解析【解析】试题分析:(1)四边形AECF为平行四边形.通过平行四边形的判定定理“有一组对边平行且相等的四边形是平行四边形”得出结论:四边形AECF为平行四边形.(2)根据直角△BAC中角与边间的关系证得△AEC是等腰三角形,即平行四边形AECF的邻边AE=EC,易证四边形AECF是菱形.(1)解:四边形AECF为平行四边形.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=CE,∴四边形AECF为平行四边形;(2)证明:∵AE=BE,∴∠B=∠BAE,又∵∠BAC=90°,∴∠B+∠BCA=90°,∠CAE+∠BAE=90°,∴∠BCA=∠CAE,∴AE=CE,又∵四边形AECF为平行四边形,∴四边形AECF是菱形.20、4a,20【解析】
先进行二次根式的化简,然后再合并同类二次根式,最后把a的值代入进行计算即可得.【详解】解:原式===当a=1时,原式=.【点睛】本题考查了二次根式的化简求值,正确化简二次根式是解题关键.21、(1)菱形,理由见解析;(2)1.【解析】
①先证出BD=CE,得出四边形BECD是平行四边形,再由直角三角形斜边上的中线性质得出CD=AB=BD,即可得出四边形BECD是菱形;
②当∠A=1°时,△ABC是等腰直角三角形,由等腰三角形的性质得出CD⊥AB,即可得出四边形BECD是正方形.【详解】解:(1)四边形BECD是菱形,理由如下:
∵D为AB中点,
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四边形BECD是平行四边形,
∵∠ACB=90°,D为AB中点,
∴CD=AB=BD,
∴四边形BECD是菱形;
故答案为:菱形;
(2)当∠A=1°时,四边形BECD是正方形;理由如下:
∵∠ACB=90°,
当∠A=1°时,△ABC是等腰直角三角形,
∵D为AB的中点,
∴CD⊥AB,
∴∠CDB=90°,
∴四边形BECD是正方形;
故答案为:1.【点睛】本题是四边形综合题目,考查了平行四边形的判定与性质、正方形的判定、菱形的判定、直角三角形斜边上的中线性质;熟练掌握平行四边形的判定与性质,并能进行推理论证是解决问题的关键.22、(1)见解析;(2)⊙O的直径EC=1.【解析】
(1)若要证明AB是⊙O的切线,则可连接AO,再证明AO⊥AB即可.
(2)连接OP,设OG为x,在直角三角形FCG中,由CF和角ACB为10°,利用10°角所对的直角边等于斜边的一半及勾股定理求出CG的长,即可表示出半径OC和OP的长,在直角三角形CGP中利用勾股定理表示出PG的长,然后在直角三角形OPG中,利用勾股定理列出关于x的方程,求出方程的解即可得到x的值,然后求出直径即可.【详解】证明:(1)连接AO,∵AB=AC,∠BAC=120°,∴∠B=∠ACB=10°,∵AO=CO,∴∠0AC=∠OCA=10°,∴∠BAO=120°-10°=90°,∵OA是半径∴AB是⊙O的切线;(2)解:连接OP,∵PF⊥BC,∴∠FGC=∠EGP=90°,∵CF=2,∠FCG=10°,∴FG=1,∴在Rt△FGC中CG=∵CP=1.∴Rt△GPC中,PG=设OG=x,则OC=x+,连接OP,,显然OP=OC=x+在Rt△OPG中,由勾股定理知即(x+)2=x2+()2∴x.∴⊙O的直径EC=EG+CG=2x++=1.故答案为:(1)见解析;(2)⊙O的直径EC=1.【点睛】本题考查圆的切线的判定,常用的切线的判定方法是连接圆心和某一点再证垂直.23、20.【解析】
设菱形AECF的边长为x,根据矩形的性质得到∠B=90°,根据勾股定理列出方程,解方程求出x的值,根据菱形的面积公式计算即可.【详解】设菱形AECF的边长为x,则BE=8−x,∵四边形ABCD为矩形,∴∠B=90°,由勾股定理得,,即,解得,x=5,即EC=5,∴菱形AECF的面积=EC⋅AB=20.【点睛】此题考查矩形的性质、翻折变换(折叠问题)、菱形的性质,解题关键在于掌握烦着图形得变化规律.24、(1)证明见解析;(2)证明见解析;(3)3,62°.【解析】
(1)由正方形的性质可得DC=BC,∠ACB=∠ACD,利用SAS证明△PBC≌△PDC,根据全等三角形的性质可得PD=PB,又因PE=PB,即可证得PD=PE;(2)类比(1)的方法证明△PBC≌△PDC,即可得∠PDC=∠PBC.再由PE=PB,根据等腰三角形的性质可得∠PBC=∠E,所以∠PDC=∠E.因为∠POD=∠COE,根据三角形的内角和定理可得∠DPO=∠OCE=90º;(3)类比(1)的方法证得PD=PE=3;类比(2)的方法证得∠DPE=∠DCE,由平行线的性质可得∠ABC=∠DCE=62°,由此可得∠DPE=62°.【详解】(1)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),CP=CP(公共边),∴△PBC≌△PDC.∴PD=PB.又∵PE=PB,∴PD=PE;(2)证明:在正方形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵DC=BC,∠ACB=∠ACD(已证),,CP=CP(公共边)∴△PBC≌△PDC.∴∠PDC=∠PBC.又∵PE=PB,∴∠PBC=∠E.∴∠PDC=∠E.又∵∠POD=∠COE,∴∠DPO=∠OCE=90º;(3)在菱形ABCD中,DC=BC,∠ACB=∠ACD,在△PBC和△PDC中,∵D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专利权质押合同登记程序
- 企业法律顾问合同(2025年版)
- 2025年审计鉴定合同
- 五年级上册数学教案-总复习 第2课时 图形与几何|北师大版
- 二年级上册数学教案-用厘米做单位量长度 (7)-西师大版
- 专题一第2课三、《便携移动设备》教学设计 2023-2024学年青岛版(2018)初中信息技术七年级上册
- 2025年黑龙江省绥化市单招职业倾向性测试题库含答案
- 2025年湖南司法警官职业学院单招职业技能测试题库必考题
- 2025年吉林省辽源市单招职业适应性测试题库附答案
- 2025年黑龙江护理高等专科学校单招职业倾向性测试题库汇编
- 《职业教育》专业知识考试复习题库及答案
- 江西2023公务员考试真题及答案
- 《国家中药饮片炮制规范》全文
- 财务管理实务(第二版)高职PPT完整版全套教学课件
- 中国古代快递的产生与发展
- 高二物理上期期末复习备考黄金30题 专题04 大题好拿分(提升20题)
- 节事活动策划与组织管理 节事活动概论
- 电梯安装质量手册、程序文件、作业指导书及记录表符合特种设备许可规范TSG07-2019
- 肋骨骨折病人的业务学习
- 生产建设项目水土保持补偿费免征申请表
- GBZ/T(卫生) 277-2016职业病危害评价通则
评论
0/150
提交评论