




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省合肥市第一六八中学2024年数学八年级下册期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.用反证法证明“a>b”时应先假设()A.a≤b B.a<b C.a=b D.a≠b2.如图①,点从菱形的顶点出发,沿以的速度匀速运动到点.图②是点运动时,的面积()随着时间()变化的关系图象,则菱形的边长为()A. B. C. D.3.为打击毒品犯罪,我县缉毒警察乘警车,对同时从县城乘汽车出发到A地的两名毒犯实行抓捕,警车比汽车提前15分钟到A地,A地距离县城8千米,警车的平均速度是汽车平均速度的2.5倍,若设汽车的平均速度是每小时x千米,根据题意可列方程为()A.+15= B.=+15C.= D.=4.博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是()A.①③ B.①②③ C.①②④ D.①②③④5.甲乙两城市相距600千米,一辆货车和一辆客车均从甲城市出发匀速行驶至乙城市.已知货车出发1小时后客车再出发,先到终点的车辆原地休息.在汽车行驶过程中,设两车之间的距离为s(千米),客车出发的时间为t(小时),它们之间的关系如图所示,则下列结论错误的是()A.货车的速度是60千米/小时B.离开出发地后,两车第一次相遇时,距离出发地150千米C.货车从出发地到终点共用时7小时D.客车到达终点时,两车相距180千米6.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子(x>0)的最小值是1”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是1();当矩形成为正方形时,就有x=(x>0),解得x=1,这时矩形的周长1()=4最小,因此(x>0)的最小值是1.模仿张华的推导,你求得式子(x>0)的最小值是()A.1 B.1 C.6 D.107.为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是()A.2013年昆明市九年级学生是总体 B.每一名九年级学生是个体C.1000名九年级学生是总体的一个样本 D.样本容量是10008.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A. B. C.12 D.249.使有意义的的取值范围是()A. B. C. D.10.某小区居民利用“健步行APP”开展健步走活动,为了解居民的健步走情况,小文同学调查了部分居民某天行走的步数单位:千步,并将样本数据整理绘制成如下不完整的频数分布直方图和扇形统计图.有下面四个推断:小文此次一共调查了200位小区居民;行走步数为千步的人数超过调查总人数的一半;行走步数为千步的人数为50人;行走步数为千步的扇形圆心角是.根据统计图提供的信息,上述推断合理的是()A. B. C. D.11.下面各组变量的关系中,成正比例关系的有()A.人的身高与年龄B.买同一练习本所要的钱数与所买本数C.正方形的面积与它的边长D.汽车从甲地到乙地,所用时间与行驶速度12.一种药品经过两次降价,药价从每盒60元下调至每盒48.6元,则平均每次降价的百分比是()A. B. C. D.二、填空题(每题4分,共24分)13.计算:=___________.14.八个边长为1的正方形如图所示的位置摆放在平面直角坐标系中,经过原点的直线l将这八个正方形分成面积相等的两部分,则这条直线的解析式是_____.15.已知一个样本的数据为1、2、3、4、x,它的平均数是3,则这个样本方差=_______16.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数的图象交于点A和点B,若点C是x轴上任意一点,连接AC、BC,则△ABC的面积为_________.17.化简的结果为________.18.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是_____.三、解答题(共78分)19.(8分)(1)计算:40372﹣4×2018×2019;(2)将边长为1的一个正方形和一个底边为1的等腰三角形如图摆放,求△ABC的面积.20.(8分)某商场销售A,B两种品牌的教学设备,这两种教学设备的进价和售价如表所示AB进价(万元/套)1.51.2售价(万元/套)1.651.4该商场计划购进两种教学设备若干套,共需66万元,全部销售后可获毛利润9万元.(1)该商场计划购进A,B两种品牌的教学设备各多少套?(2)通过市场调研,该商场决定在原计划的基础上,减少A种设备的购进数量,增加B种设备的购进数量,已知B种设备增加的数量是A种设备减少的数量的1.5倍.若用于购进这两种教学设备的总资金不超过69万元,问A种设备购进数量至多减少多少套?21.(8分)如图,在△ABC中,∠BAC=90°,AD是中线,E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF,求证:四边形ADCF是菱形.22.(10分)荔枝上市后,某水果店的老板用500元购进第一批荔枝,销售完后,又用800元购进第二批荔枝,所购件数是第一批购进件数的2倍,但每件进价比第一批进价少5元.(1)求第一批荔枝每件的进价;(2)若第二批荔枝以30元/件的价格销售,在售出所购件数的后,为了尽快售完,决定降价销售,要使第二批荔枝的销售利润不少于300元,剩余的荔枝每件售价至少多少元?23.(10分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由24.(10分)已知△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,D、E分别在BC、AC边上.(1)如图1,F是线段AD上的一点,连接CF,若AF=CF;①求证:点F是AD的中点;②判断BE与CF的数量关系和位置关系,并说明理由;(2)如图2,把△DEC绕点C顺时针旋转α角(0<α<90°),点F是AD的中点,其他条件不变,判断BE与CF的关系是否不变?若不变,请说明理由;若要变,请求出相应的正确结论.25.(12分)如图,直线l1:y=x+6与直线l2:y=kx+b相交于点A,直线l1与y轴相交于点B,直线l2与y轴负半轴相交于点C,OB=2OC,点A的纵坐标为1.(1)求直线l2的解析式;(2)将直线l2沿x轴正方向平移,记平移后的直线为l1,若直线l1与直线l1相交于点D,且点D的横坐标为1,求△ACD的面积.26.计算或化简:(1)计算:(2)先化简,再求值:,其中.
参考答案一、选择题(每题4分,共48分)1、A【解析】
熟记反证法的步骤,直接得出答案即可,要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选:A.【点睛】本题考查了反证法,解此题关键要懂得反证法的意义及步骤.2、C【解析】
根据图②可以发现点E运动5秒后△ABE的面积停止了变化,且为最大面积,由此结合图①,当点E在CD上运动时,△ABE面积最大,从而得出AC=5,CD=,然后根据△ABE最大面积为2得出△ABC面积为2,所以菱形ABCD面积为4,从而再次得出△ABC的高为4,然后进一步利用勾股定理求出菱形边长即可.【详解】如图,过C点作AB垂线,交AB于E,由题意得:△ABC面积为2,AC=5,DC=,∵四边形ABCD是菱形,∴AB=DC=BC=,∴△ABC面积==2,∴CE=4,∴在Rt△AEC中,AE==3,∴BE=,∴在Rt△BEC中,,即,解得:.∴菱形边长为.故选:C.【点睛】本题主要考查了菱形与三角形动点问题的综合运用,熟练掌握相关性质是解题关键.3、D【解析】
设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,根据时间=路程÷速度结合警车比汽车提前小时(15分钟)到A地,即可得出关于x的分式方程,此题得解.【详解】设汽车的平均速度是每小时x千米,则警车的平均速度是每小时2.5x千米,依题意,得:=+.故选D.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.4、A【解析】
根据条形统计图中的信息对4个结论进行判断即可.【详解】由条形统计图可知,从2012年到2018年,博物馆参观人数呈现持续增长态势,故①正确;从2012年到2018年增加了10.08-5.64=4.44(亿人次),平均每年增加4.44÷6=0.74(亿人次)则2019年将会达到10.08+0.74=10.82(亿人次),故②正确;2013年增加了6.34-5.64=0.7(亿人次),2014年增加了7.18-6.34=0.84(亿人次),2015年增加了7.81-7.18=0.63(亿人次),2016年增加了8.50-7.81=0.69(亿人次),2017年增加了9.72-8.50=1.22(亿人次),2018年增加了10.08-9.72=0.36(亿人次),则2017年增幅最大,故③正确;设从2016年到2018年年平均增长率为x,则8.50(1+x)2=10.08解得x≈0.09(负值已舍),即年平均增长约为9%,故④错误;综上可得正确的是①②③.故选:B.【点睛】此题考查了条形统计图,弄清题中图形中的数据是解本题的关键.5、C【解析】
通过函数图象可得,货车出发1小时走的路程为60千米,客车到达终点所用的时间为6小时,根据行程问题的数量关系可以求出货车和客车的速度,利用数形结合思想及一元一次方程即可解答.【详解】解:由函数图象,得:货车的速度为60÷1=60千米/小时,客车的速度为600÷6=100千米/小时,故A错误;设客车离开起点x小时后,甲、乙两人第一次相遇,根据题意得:100x=60+60x,解得:x=1.5,∴离开起点后,两车第一次相遇时,距离起点为:1.5×100=150(千米),故B错误;甲从起点到终点共用时为:600÷60=10(小时),故C正确;∵客车到达终点时,所用时间为6小时,货车先出发1小时,∴此时货车行走的时间为7小时,∴货车走的路程为:7×60=420(千米),∴客车到达终点时,两车相距:600﹣420=180(千米),故D错误;故选C.【点睛】本题主要考查了函数图象的读图能力,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6、C【解析】
试题分析:仿照张华的推导,在面积是9的矩形中设矩形的一边长为x,则另一边长是,矩形的周长是1();当矩形成为正方形时,就有x=(x>0),解得x=3,这时矩形的周长1()=11最小,因此(x>0)的最小值是2.故选C.考点:1.阅读理解型问题;1.转换思想的应用.7、D【解析】试题分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可:A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;D、样本容量是1000,该说法正确,故本选项正确.故选D.8、A【解析】
解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=AB•DH=AC•BD,即5DH=×8×6,解得DH=.故选A.【点睛】本题考查菱形的性质.9、B【解析】
根据二次根式有意义的条件得到关于x的不等式,解不等式即得答案.【详解】解:要使有意义,则,解得.故选B.【点睛】本题考查了二次根式有意义的条件,明确二次根式中被开方数非负是求解的关键.10、C【解析】
由千步的人数及其所占百分比可判断;由行走步数为千步的人数为70,未超过调查总人数的一半可判断;总人数乘以千步的人数所占比例可判断;用乘以千步人数所占比例可判断.【详解】小文此次一共调查了位小区居民,正确;行走步数为千步的人数为70,未超过调查总人数的一半,错误;行走步数为千步的人数为人,正确;行走步数为千步的扇形圆心角是,正确,故选C.【点睛】本题考查了频数率直方图,读懂统计图表,从中获得必要的信息是解题的关键.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.11、B【解析】
判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.【详解】解:A、人的身高与年龄不成比例,故选项错误;B、单价一定,买同一练习本所要的钱数与所买本数成正比例,故选项正确;C、正方形的面积与它的边长不成比例,故选项错误;D、路程一定,所用时间与行驶速度成反比例,故选项错误;故选:B.【点睛】考查了正比例函数的定义,此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12、B【解析】
设平均每次降价的百分比是x,则第一次降价后的价格为60×(1-x)元,第二次降价后的价格在第一次降价后的价格的基础上降低的,为60×(1-x)×(1-x)元,从而列出方程,然后求解即可.【详解】解:设平均每次降价的百分比是,根据题意得:,解得:,(不合题意,舍去),答:平均每次降价的百分比是10%;故选:B.【点睛】本题考查了一元二次方程的应用,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题(每题4分,共24分)13、【解析】
解:2-=故答案为:14、y=x【解析】
设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,易知OB=1,利用三角形的面积公式和已知条件求出A的坐标,再利用待定系数法可求出该直线l的解析式.【详解】设直线l和八个正方形的最上面交点为A,过点A作AB⊥y轴于点B,过点A作AC⊥x轴于点C,如图所示.∵正方形的边长为1,∴OB=1.∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两部分面积分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,∴点A的坐标为(,1).设直线l的解析式为y=kx,∵点A(,1)在直线l上,∴1=k,解得:k=,∴直线l解析式为y=x.故答案为:y=x.【点睛】本题考查了待定系数法求一次函数解析式、正方形的性质以及三角形的面积,利用三角形的面积公式和已知条件求出A的坐标是解题的关键.15、2【解析】
已知该样本有5个数据.故总数=3×5=15,则x=15-1-2-3-4=5,则该样本方差=.【点睛】本题难度较低,主要考查学生对简单统计中平均数与方差知识点的掌握,计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数.16、1.【解析】
设P(0,b),∵直线APB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=-,即A点坐标为(-,b),又∵点B在反比例函数y=的图象上,∴当y=b,x=,即B点坐标为(,b),∴AB=-(-)=,∴S△ABC=•AB•OP=••b=1.17、【解析】
首先把分子、分母分解因式,然后约分即可.【详解】解:==【点睛】本题主要考查了分式的化简,正确进行因式分解是解题的关键.18、1【解析】
先根据已知条件以及多边形的外角和是360°,解出内角和的度数,再根据内角和度数的计算公式即可求出边数.【详解】解:∵多边形的内角和与外角和的总和为900°,多边形的外角和是360°,∴多边形的内角和是900﹣360=140°,∴多边形的边数是:140°÷180°+2=3+2=1.故答案为:1.【点睛】本题主要考查多边形的内角和定理及多边形的外角和定理,熟练掌握多边形内角和定理是解答本题的关键.n边形的内角和为:(n-2)×180°,n边形的外角和为:360°.三、解答题(共78分)19、(1)1;(2).【解析】
(1)根据完全平方公式进行计算,即可得出答案;(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,利用正方形和等腰三角形的性质得出CE的长,进而得出△ABC的面积即可.【详解】(1)40372﹣4×2018×2019=(2019+2018)2﹣4×2018×2019=20192+2×2019×2018+20182-4×2018×2019=20192-2×2019×2018+20182=(2019﹣2018)2=12=1.(2)如图,过点C作CD⊥BF于D,CE⊥AB,交AB延长线于E,∵△BCF是等腰三角形,∴DB=BF,∵四边形ABFG是正方形,∴∠FBE=90°,∴四边形BECD是矩形,∵BF=1,∴CE=BD=BF,∴△ABC的面积=AB•CE=×1×=.【点睛】本题考查正方形的性质、等腰三角形的性质及矩形的判定,熟练掌握等腰三角形“三线合一”的性质是解题关键.20、(1)A,B两种品牌的教学设备分别为20套,30套;(2)至多减少1套.【解析】
(1)设A品牌的教学设备x套,B品牌的教学设备y套,根据题意可得方程组,解方程组即可求得商场计划购进A,B两种品牌的教学设备的套数;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意得不等式1.5(20-a)+1.2(30+1.5a)≤69,解不等式即可求得答案.【详解】(1)设A品牌的教学设备x套,B品牌的教学设备y套,由题意,得,解得:.答:该商场计划购进A品牌的教学设备20套,B品牌的教学设备30套;(2)设A种设备购进数量减少a套,则B种设备购进数量增加1.5a套,由题意,得1.5(20-a)+1.2(30+1.5a)≤69,解得:a≤1.答:A种设备购进数量至多减少1套.21、见解析【解析】
根据AAS证△AFE≌△DBE,推出AF=BD.结合已知条件,利用“有一组对边平行且相等的四边形是平行四边形”得到ADCF是平行四边形,进而证明ADCF是菱形.【详解】证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,AD是BC边上的中线,∴AE=DE,BD=CD,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB.∵DB=DC,∴AF=CD.∵AF∥BC,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=BC=DC,∴四边形ADCF是菱形.【点睛】本题考查了全等三角形的性质和判定,平行四边形的判定,菱形的判定的应用,解题的关键是正确寻找全等三角形,利用直角三角形的性质解决问题,属于中考常考题型.22、(1)第一批荔枝每件进价为25元;(2)剩余的荔枝每件售价至少25元.【解析】
(1)设第一批荔枝每件的进价为x元,则第二批荔枝每件的进价为(x-5)元,根据数量=总价÷单价结合第二批购进荔枝的件数是第一批购进件数的2倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)根据数量=总价÷单价可求出第二次购进荔枝的件数,设剩余的荔枝每件售价为y元,根据总利润=单件利润×销售数量结合第二批荔枝的销售利润不少于300元,即可得出关于y的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设第一批荔枝每件进价为元,则第二批荔枝每件进价为元,则有,解得:,经检验是原方程的根。所以,第一批荔枝每件进价为25元。(2)设剩余的荔枝每件售价元,第二批荔枝每件进价为20元,共40件,,解得:所以,剩余的荔枝每件售价至少25元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23、(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.【解析】
(1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量,结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.【详解】解:(1)设购买A型号足球x个,B型号足球y个,依题意,得解之得答:该校购买A型号足球60个,B型号足球40个;(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据题意得w=200m+250(100-m)=-50m+25000又∵m≤9(100-m);∴0<m≤90或(m≤90)∵K=-50<0∴w随m的増大而減小∴当m=90肘w最小∴最省钱的购买方案为:A型足球90个,B型足球10个.故答案为:(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.【点睛】本题考查二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.24、(1)①证明见解析;②BE=2CF,BE⊥CF;(2)仍然有BE=2CF,BE⊥CF.【解析】
(1)①如图1,由AF=CF得到∠1=∠2,则利用等角的余角相等可得∠3=∠ADC,然后根据等腰三角形的判定定理得FD=FC,易得AF=FD;
②先利用等腰直角三角形的性质得CA=CB,CD=CE,则可证明△ADC≌△BEC得到AD=BE,∠1=∠CBE,由于AD=2CF,∠1=∠2,则BE=2CF,再证明∠CBE+∠3=90°,于是可判断CF⊥BE;
(2)延长CF到G使FG=CF,连结AG、DG,如图2,易得四边形ACDG为平行四边形,则AG=CD,AG∥CD,于是根据平行线的性质得∠GAC=180°-∠ACD,所以CD=CE=AG,再根据旋转的性质得∠BCD=α,所以∠BCE=∠DCE+∠BCD=90°+α=90°+90°-∠ACD=180°-∠ACD,得到∠GAC=∠ECB,接着可证明△AGC≌△CEB,得到CG=BE,∠2=∠1,所以BE=2CF,和前面一样可证得CF⊥BE.【详解】(1)①证明:如图1,∵AF=CF,∴∠1=∠2,∵∠1+∠ADC=90°,∠2+∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专利权质押合同登记程序
- 企业法律顾问合同(2025年版)
- 2025年审计鉴定合同
- 五年级上册数学教案-总复习 第2课时 图形与几何|北师大版
- 二年级上册数学教案-用厘米做单位量长度 (7)-西师大版
- 专题一第2课三、《便携移动设备》教学设计 2023-2024学年青岛版(2018)初中信息技术七年级上册
- 2025年黑龙江省绥化市单招职业倾向性测试题库含答案
- 2025年湖南司法警官职业学院单招职业技能测试题库必考题
- 2025年吉林省辽源市单招职业适应性测试题库附答案
- 2025年黑龙江护理高等专科学校单招职业倾向性测试题库汇编
- 按键精灵脚本编写方法
- 节约集约建设用地标准 DG-TJ08-2422-2023
- 建筑工程项目合作备忘录
- 竹签购销合同范例
- 物联网工程导论
- 学校安全干事述职
- JJF(京) 68-2021 电能表现场校验标准装置校准规范
- 《汽车保险与理赔》-教学设计
- 2024至2030年中国矿用隔爆型监控摄像仪行业投资前景及策略咨询研究报告
- 大学生职业素养训练(第六版)课件 第二单元学习职业礼仪
- 路桥工程检测技术 课件 1公路工程试验检测管理
评论
0/150
提交评论