版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西商南县2024届八年级数学第二学期期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在菱形中,,.是边上的一点,,分别是,的中点,则线段的长为()A. B. C. D.2.若,,,是直线上的两点,当时,有,则的取值范围是A. B. C. D.3.童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用时间,y表示童童离家的距离.下图中能反映y与x的函数关系式的大致图象是()A. B. C. D.4.下面有四个定理:①平行四边形的两组对边分别相等;②平行四边形的两组对角分别相等;③平行四边形的两组对边分别平行;④平行四边形的对角线互相平分;其逆命题正确的有()A.1个 B.2个 C.3个 D.4个5.菱形OABC在平面直角坐标系中的位置如图所示,若OA=2,∠AOC=45°,则B点的坐标是A.(2+,) B.(2﹣,) C.(﹣2+,) D.(﹣2﹣,)6.随着电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只有0.0000007(毫米),数据0.0000007用科学记数法表示为()A. B. C. D.7.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个8.如图,▱ABCD的周长为16cm,AC,BD相交于点O,OE⊥AC交AD于点E,则△DCE的周长为()A.4cm B.6cm C.8cm D.10cm9.对于二次根式,以下说法不正确的是()A.它是一个无理数 B.它是一个正数 C.它是最简二次根式 D.它有最小值为310.如图,正方形ABCD的边长为1,其面积标记为S1,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…,按照此规律继续下去,则S2018的值为()A. B. C. D.11.等腰三角形的一个角为50°,则这个等腰三角形的底角为()A.65° B.65°或80° C.50°或65° D.40°12.已知直线y=kx+b,k>0,b>0,则下列说法中正确的是()A.这条直线与x轴交点在正半轴上,与y轴交点在正半轴上B.这条直线与x轴交点在正半轴上,与y轴交点在负半轴上C.这条直线与x轴交点在负半轴上,与y轴交点在正半轴上D.这条直线与x轴交点在负半轴上,与y轴交点在负半轴上二、填空题(每题4分,共24分)13.如图,在△MBN中,已知:BM=6,BN=7,MN=10,点AC,D分别是MB,NB,MN的中点,则四边形ABCD的周长是_____.14.如图,中,,,,是内部的任意一点,连接,,,则的最小值为__.15.已知菱形两条对角线的长分别为12和16,则这个菱形的周长为______.16.已知一次函数y=mx+n(m≠0)与x轴的交点为(3,0),则方程mx+n=0(m≠0)的解是x=________.17.已知函数关系式:,则自变量x的取值范围是▲.18.已知菱形两条对角线的长分别为4和6,则菱形的边长为______.三、解答题(共78分)19.(8分)如图、,在平行四边形中,、的角平分线、分别与线段两侧的延长线(或线段)相交与、,与相交于点.(1)在图中,求证:,.(2)在图中,仍有(1)中的,成立,请解答下面问题:①若,,,求和的长;②是否能给平行四边形的边和角各添加一个条件,使得点恰好落在边上且为等腰三角形?若能,请写出所给条件;若不能,请说明理由.20.(8分)一组数据从小到大顺序排列后为:1,4,6,x,其中位数和平均数相等,求x的值。21.(8分)如图,一次函数的图象与反比例函数(为常数,且)的图象交于A(1,a)、B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标及△PAB的面积.22.(10分)学完三角形的高后,小明对三角形与高线做了如下研究:如图,是中边上的-点,过点、分别作、、、,垂足分别为点、、,由与的面积之和等于的面积,有等量关系式:.像这种利用同一平面图形的两种面积计算途径可以得出相关线段的数量关系式,从而用于解决数学问题的方法称为“等积法”,下面请尝试用这种方法解决下列问题.图(1)图(2)(1)如图(1),矩形中,,,点是上一点,过点作,,垂足分别为点、,求的值;(2)如图(2),在中,角平分线、相交于点,过点分别作、,垂足分别为点、,若,,求四边形的周长.23.(10分)先化简,再求值:(x+2+3x+4x-2)÷x2+6x+9x-224.(10分)某校为了解“阳光体育”活动的开展情况,从全校2000名学生中,随机抽取部分学生进行问卷调查(每名学生只能填写一项自己喜欢的活动项目),并将调查结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)被调查的学生共有人,并补全条形统计图;(2)在扇形统计图中,m=,n=,表示区域C的圆心角为度;(3)全校学生中喜欢篮球的人数大约有多少?25.(12分)(1)因式分解:;(2)解方程:26.如图,已知是等边三角形,点在边上,是以为边的等边三角形,过点作的平行线交线段于点,连接。求证:(1);(2)四边形是平行四边形。
参考答案一、选择题(每题4分,共48分)1、C【解析】
如图连接BD.首先证明△ADB是等边三角形,可得BD=8,再根据三角形的中位线定理即可解决问题.【详解】如图连接BD.∵四边形ABCD是菱形,∴AD=AB=8,∵∴△ABD是等边三角形,∴BA=AD=8,∵PE=ED,PF=FB,∴故选:C.【点睛】考查菱形的性质以及三角形的中位线定理,三角形的中位线平行于第三边并且等于第三边的一半.2、B【解析】
x1<x2时,有y1>y2,说明y随x的最大而减小,即可求解.【详解】时,有,说明随的最大而减小,则,即,故选.【点睛】本题考查的是一次函数图象上点的坐标特征,主要分析y随x的变化情况即可.3、A【解析】
根据步行速度慢,路程变化慢,等车时路程不变化,乘公交车时路程变化快,看比赛时路程不变化,回家时乘车路程变化快,可得答案.【详解】步行先变化慢,等车路程不变化,乘公交车路程变化快,看比赛路程不变化,回家路程变化快.故选A.【点睛】本题考查了函数图象,根据童童的活动得出函数图形是解题关键,注意选项B中步行的速度快不符合题意.4、D【解析】
分别写出各个命题的逆命题,根据平行四边形的判定定理判断即可.【详解】解:平行四边形的两组对边分别相等的逆命题是两组对边分别相等的四边形是平行四边形,是真命题;平行四边形的两组对角分别相等的逆命题是两组对角分别相等的四边形是平行四边形,是真命题;平行四边形的两组对边分别平行的逆命题是两组对边分别平行的四边形是平行四边形,是真命题;平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,是真命题。故选:D【点睛】本题考查的是命题的真假判断和逆命题的概念,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.5、D【解析】试题分析:根据题意得C(-2,0),过点B作BD⊥OC,则BD=CD=,则点B的坐标为(-2-,).考点:菱形的性质.6、C【解析】
科学记数法就是将一个数字表示成(a×10的n次幂的形式),其中1≤|a|<10,n表示整数.即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n次幂.本题0.0000001<1时,n为负数.【详解】0.0000001=1×10-1.
故选C.【点睛】此题考查的是电子原件的面积,可以用科学记数法表示,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、D【解析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.8、C【解析】
根据平行四边形性质得出AD=BC,AB=CD,OA=OC,根据线段垂直平分线性质得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【详解】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC.∵EO⊥AC,∴AE=EC.∵AB+BC+CD+AD=16cm,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8(cm).故选C.【点睛】本题考查了平行四边形性质、线段垂直平分线性质的应用,关键是求出AE=CE,主要培养学生运用性质进行推理的能力.9、A【解析】
根据最简二次根式的定义:被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【详解】是一个非负数,是最简二次根式,最小值是3,
当时x=0,是有理数,故A错误;故选A.【点睛】考查了最简二次根式,利用最简二次根式的性质是解题关键.10、B【解析】
根据题意求出面积标记为S2的等腰直角三角形的直角边长,得到S2,同理求出S3,根据规律解答.【详解】∵正方形ABCD的边长为1,∴面积标记为S2的等腰直角三角形的直角边长为,则S2=面积标记为S3的等腰直角三角形的直角边长为×=,则S3=……则S2018的值为:,故选:B.【点睛】本题考查的是勾股定理、正方形的性质,根据勾股定理求出等腰直角三角形的边长是解题的关键.11、C【解析】
已知给出了一个内角是50°,没有明确是顶角还是底角,所以要进行分类讨论,分类后还要用内角和定理去验证每种情况是不是都成立.【详解】当50°是等腰三角形的顶角时,则底角为(180°﹣50°)×12=65当50°是底角时也可以.故选C.【点睛】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.12、C【解析】
先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.【详解】解:∵直线y=kx+b,k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选:C.【点睛】本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.二、填空题(每题4分,共24分)13、13【解析】
根据中位线性质可以推出CD∥AB,AD∥BC,可得四边形ABCD为平行四边形,由中点可得四边形ABCD的周长【详解】∵点A,C,D分别是MB,NB,MN的中点,∴CD∥AB,AD∥BC,∴四边形ABCD为平行四边形,∴AB=CD,AD=BC.∵BM=6,BN=7,点A,C分别是MB,NB的中点,∴AB=3,BC=3.5,∴四边形ABCD的周长=(AB+BC)×2=(3+3.5)×2=13.故答案为13【点睛】本题考查了中位线的性质,以及平行四边形的判定及性质,掌握中位线的性质及平行四边形的性质是解题的关键.14、.【解析】
将绕着点逆时针旋转,得到,连接,,通过三角形全等得出三点共线长度最小,再利用勾股定理解答即可.【详解】如图,将绕着点逆时针旋转,得到,连接,,,,,,,是等边三角形当点,点,点,点共线时,有最小值,故答案为:.【点睛】本题考查三点共线问题,正确画出辅助线是解题关键.15、1【解析】
根据菱形的对角线互相垂直平分,利用勾股定理即可解决.【详解】如图,四边形ABCD是菱形,AC=12,BD=16,
∵四边形ABCD是菱形,
∴AC⊥BC,AB=BC=CD=AD,AO=OC=6,OB=OD=8,
在Rt△AOB中,AB=,
∴菱形ABCD周长为1.
故答案为1
【点睛】本题考查菱形的性质、勾股定理等知识,记住菱形的对角线互相垂直平分、菱形的四边相等是解决问题的关键,属于中考常考题型.16、1【解析】
直接根据函数图象与x轴的交点进行解答即可.【详解】∵一次函数y=mx+n与x轴的交点为(1,0),∴当mx+n=0时,x=1.故答案为:1.【点睛】本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.17、【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。18、【解析】
根据菱形的性质及勾股定理即可求得菱形的边长.【详解】解:因为菱形的对角线互相垂直平分,
所以对角线的一半为2和3,根据勾股定理可得菱形的边长为故答案为:.【点睛】此题主要考查菱形的基本性质:菱形的对角线互相垂直平分,综合利用了勾股定理的内容.三、解答题(共78分)19、(1)见解析;(2)①,,②,,见解析.【解析】
(1)由平行线的性质和角平分线的性质即可证明结论;(2)①由(1)题的思路可求得FG的长,再证明△BCG是等边三角形,从而得,过点作交延长线于点,在Rt△AFH中用勾股定理即可求出AF的长;②若使点恰好落在边上且为等腰三角形,易得F、G两点重合于点E,再结合(1)(2)的结论进行分析即可得到结论.【详解】解:(1)∵四边形是平行四边形,∴,.∴,又∵、是与的角平分线,∴,即∠AEB=90°,∴,∵,∴,又∵是的角平分线、∴,∴.同理可得.∴;(2)解:①由已知可得,、仍是与的角平分线且,,,,.如图,过点作交延长线于点.∵,,..∵,,,,,,.②,(类似答案均可).若使点恰好落在边上,则易得F、G两点重合于点E,又由(1)(2)的结论知,,所以平行四边形的边应满足;若使点恰好落在边上且为等腰三角形,则EA=EB,所以∠EAB=∠EBA,又因为、仍是与的角平分线,所以∠CBA=∠BAD=90°,所以∠C=90°.【点睛】本题考查了平行四边形的性质、角平分线的概念、平行线的性质、垂直的定义、等腰三角形和等边三角形的判定和性质、勾股定理和30°角的直角三角形的性质,考查的知识点多,综合性强,解题的关键是熟练掌握上述知识,弄清题意,理清思路,注重知识的前后联系.20、x=9【解析】
根据这组数据的中位数和平均数相等,得出(4+6)÷2=(1+4+6+x)÷4,求出x的值.【详解】解:依题意可得:(4+6)÷2=(1+4+6+x)÷4,解得x=9,故答案为:9.【点睛】此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.21、(1),;(2)P,.【解析】试题分析:(1)由点A在一次函数图象上,结合一次函数解析式可求出点A的坐标,再由点A的坐标利用待定系数法即可求出反比例函数解析式,联立两函数解析式成方程组,解方程组即可求出点B坐标;(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,连接PB.由点B、D的对称性结合点B的坐标找出点D的坐标,设直线AD的解析式为y=mx+n,结合点A、D的坐标利用待定系数法求出直线AD的解析式,令直线AD的解析式中y=0求出点P的坐标,再通过分割图形结合三角形的面积公式即可得出结论.试题解析:(1)把点A(1,a)代入一次函数y=-x+4,得:a=-1+4,解得:a=3,∴点A的坐标为(1,3).把点A(1,3)代入反比例函数y=,得:3=k,∴反比例函数的表达式y=,联立两个函数关系式成方程组得:,解得:,或,∴点B的坐标为(3,1).(2)作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,连接PB,如图所示.∵点B、D关于x轴对称,点B的坐标为(3,1),∴点D的坐标为(3,-1).设直线AD的解析式为y=mx+n,把A,D两点代入得:,解得:,∴直线AD的解析式为y=-2x+1.令y=-2x+1中y=0,则-2x+1=0,解得:x=,∴点P的坐标为(,0).S△PAB=S△ABD-S△PBD=BD•(xB-xA)-BD•(xB-xP)=×[1-(-1)]×(3-1)-×[1-(-1)]×(3-)=.考点:1.反比例函数与一次函数的交点问题;2.待定系数法求一次函数解析式;3.轴对称-最短路线问题.22、(1);(2)4【解析】
(1)由矩形的性质可得∠ABC=90°,AO=CO,BO=DO,由“等积法”可求解;(2)由“等积法”可求OM=ON=1,通过证明四边形AMON是正方形,即可求解.【详解】解:(1)如图,连接,则由矩形性质有:又∴∴解得:;(2)连接,过点作,垂足为点,又是的角平分线,、,垂足分别为点、,,在中,设,则解得:四边形是矩形又矩形是正方形正方形的周长.【点睛】本题考查了矩形的性质,正方形的判定,熟练掌握“等积法”是本题的关键23、xx+3,4-23【解析】【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除运算,最后把x的值代入进行计算即可得.【详解】原式=(x2-4=x=x=xx+3当x=23时,原式=2323+3=22+【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.24、(1)学生总数100人,跳绳40人,条形统计图见解析;(2)144°;(3)200人.【解析】
(1)用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版办公家具展会租赁与销售合作合同3篇
- 二零二五年度武汉东湖风景区旅游开发合同3篇
- 二零二五年度艺术品共同创作与展览合同2篇
- 二零二五版房屋租赁合同免责及维修保障3篇
- 二零二五版灯光照明工程设计咨询合同2篇
- 二零二五版班组分包消防设施分包服务合同样本3篇
- 二零二五版新媒体行业劳动合同制度及知识产权保护协议2篇
- 二零二五年空调销售与绿色消费倡导合同3篇
- 二零二五年度钢管模板租赁环保要求及价格评估合同3篇
- 二零二五版网络安全威胁情报共享与预警服务合同范本3篇
- 2025-2030年中国糖醇市场运行状况及投资前景趋势分析报告
- 八年级散文阅读专题训练-八年级语文上册知识梳理与能力训练
- 2024年杭州市中医院高层次卫技人才招聘笔试历年参考题库频考点附带答案
- 2024-2025学年人教版八年级数学上册期末测试模拟试题(含答案)
- 《环境感知技术》2024年课程标准(含课程思政设计)
- GB/T 45079-2024人工智能深度学习框架多硬件平台适配技术规范
- 2024年安徽省铜陵市公开招聘警务辅助人员(辅警)笔试自考练习卷二含答案
- 国家安全教育高教-第六章坚持以经济安全为基础
- 水处理药剂采购项目技术方案(技术方案)
- 2024年城市环卫一体化服务合同
- 工地春节安全培训
评论
0/150
提交评论